TRANSFERS ON MILNOR-WITT K-THEORY

NIELS FELD*

Abstract

We study the existence of transfers on a generalization of Milnor K-theory called
Milnor-Witt K-theory. We give a new proof of the fact that Milnor-Witt K-theory
has geometric transfers. Moreover, we explain how our proof yields a simplification of
Morel’s conjecture about Bass-Tate-Kato transfers on contracted homotopy sheaves

in the context of motivic homotopy theory.
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1 Introduction

1.1 Current work

In the beginning of the century, Morel (in joint work with Hopkins) defined for a field F the
Milnor-Witt K-theory KMW(E) (see [Mor12l Definition 3.1]). This Z-graded abelian group
behaves in positive degrees like Milnor K-theory groups K (E) (or rather its fibre product
with powers of the fundamental ideal), and in non-positive degrees like Grothendieck-Witt
and Witt groups of quadratic forms, GW(E) and W(E). The Milnor-Witt K-theory was
originally used for solving some splitting problems for projective modules (see e.g. the
work of Barge and Morel [BMO00]). Since then, Milnor-Witt K-groups have proven to be
relevant for motivic homotopy and its applications in algebraic geometry.

The word "transfer" has many incarnations in mathematics. Philosophically, a transfer
is a way to pass on information from one world to another. In K-theory and algebraic
geometry, transfers are maps related to pushforwards or maps that go in the wrong way.
For instance, in [BT73|, Bass and Tate defined a map

Tryr: KM(F(2)) — KM(F)

for any monogenic extension of fields F'(z)/F. Unfortunately, the natural definition given
by Bass and Tate had one issue: the map Tr,/r may depend on the choice of generator
x. This raises the question of functoriality of such transfer maps. In 1973, Bass and Tate
conjectured that such transfers are well-defined but a proof appeared only a decade later
in the work of Kato [Kat80].

The study of transfers has a long history in motivic homotopy theory (see [FSVQQ,
Dé12, [Fas08, (GP18, IBCD™20, [Fel21]). In [Morl12, Chapter 4|, Morel introduced transfers
on the Milnor-Witt K-theory of a field. Following ideas of Bass and Tate [BT73], one can

define geometric transfer maps

-----

on KMW for finite extensions E(x,...,x,)/E (see the next section for more details).
Morel proved in [Morl2, Chapter 4] that such transfers are well-defined and functorial.

The relevance of wg(y, ... 2,)/£ for making the transfers independent of choices of generating

elements is hinted by the fact that the naive definition of the residue map 9] of a discrete
valuation depends on the choice of prime 7 (see [Morl2, Remark 3.20]).

In this article, we give a new (shorter) proof of this result:

Theorem 1 (Theorem [2.17)). Let E(x1,...,x,.)/E be a finite extension of fields. The

transfer map
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Trml’_“,mr/E : KiWW<E<ZIZ'1, .. ,xT),wE(xhu_@r)/E) — Kin(E>
does not depend on the choice of the generating system (x1,...,x;,).

The idea is to reduce to the case of p-primary fields (see Definition then study
the transfers manually, as Kato originally did for Milnor K-theory (see [GS17| for an
elementary exposition).

Moreover, this proof applies to the study of a conjecture of Morel about the existence

of transfer maps for (contracted) homotopy sheaves:

Theorem 2 (Theorem [3.26)). In order to prove that a contracted homotopy sheaf M_;
has functorial transfers, it suffices to consider the case of p-primary fields (where p is a

prime number).

1.2 Outline of the paper

In Subsection [2.1] we recall some properties of fields called p-primary fields. For p a prime
number, a p-primary field has no nontrivial finite extension prime to p (see Definition .
In Subsection [2.2]and Subsection[2.3] we give the basic definitions of Milnor-Witt K-theory
In Subsection and Subsection [3.2] we prove that Milnor-Witt K-theory has transfer
maps which are functorial. The proof is similar to the original proof of Kato for Milnor
K-theory: we reduce to the case of p-primary fields then study the transfers manually. In
Subsection [3.3] we end with a discussion of a conjecture of Morel in motivic homotopy
theory by applying ideas from Subsection [3.1]

1.3 Acknowledgements

I deeply thank my two PhD advisors Frédéric Déglise and Jean Fasel, and my two PhD
referees Marc Levine and Paul Arne @stveer. Moreover, I am extremely grateful to the

anonymous referee for taking the time to review this paper.

2 Definitions

Notation

Throughout the paper, we fix a (commutative) field & and we assume moreover that & is
perfect (of arbitrary characteristic).

By a field E over k, we mean a finitely generated extension of fields E/k.

Let E be a field (over k) and v a valuation on E. We will always assume that v is

discrete. We denote by O, its valuation ring, by m, its maximal ideal and by x(v) its
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residue class field. We consider only valuations of geometric type, that is we assume:
k C O,, the residue field x(v) is finitely generated over k and satisfies tr. deg, (x(v))+1 =
tr. deg, (F).

Let f : X — Y be a morphism of schemes. Denote by L; (or Lx/y) the virtual
vector bundle over Y associated with the cotangent complex of f, and by wy (or wx,y)
its determinant. Recall that if p : X — Y is a smooth morphism, then £, is (isomorphic
to) T, = lx/v the space of relative (Kahler) differentials. If i : Z — X is a regular closed
immersion, then £; is the normal cone —NzX. If f is the composite Y — P% L. X
with p and 7 as previously (in other words, if f is lci quasi-projective), then £ is isomor-
phic to the virtual tangent bundle i*7pn /x — Ny (P%). In practice, we mostly work with
smooth schemes hence every map (between smooth schemes) is lci quasi-projective.

Let X be a scheme and x € X a point. Specializing the previous notations, we denote
by Lo = Lspec(n(z)/x = (Mz/m2)Y and w, its determinant. Similarly, let v a discrete
valuation on a field, we denote by w, the line bundle (m,/m?)".

Let E be a field. We denote by GW(F) the Grothendieck-Witt ring of symmetric
bilinear forms on £ (another equivalent definition of GW(FE) is given in [Morl2, Lemma
3.9]. This is well-defined in characteristic 2 according to the work of Morel). For any
a € E* we denote by (a) the class of the symmetric bilinear form on E defined by
(X,Y) + aXY and, for any natural number n, we put n. = 7 (—1)""". Recall that if
n and m are two natural numbers, then (nm). = n.m..

2.1 On p-primary fields

We recall some facts about fields (see [Sha82) §1| and [BT73], Section 5|). Let E be a field
and p a prime number. Fix a separable closure F, of E and consider the set of all sub-
extensions of F that contain E and that can be realized as a union of finite prime-to-p
extensions of K. Zorn’s lemma implies that this set contains a maximal element E, for

the inclusion.

PROPOSITION 2.1. If F' is a finite extension of E contained in Ey,, then its degree
[F': E] is prime to p.

Proof. Write F' = E(xy,...,x,) with ; € F. Each z; is contained in a prime-to-p
extension of E hence has a degree prime to p. O

PROPOSITION 2.2. If F' is a finite extension of Ey,, then its degree [F : Ey,] is equal
to p" for some natural number n.

Proof. Let x be any element in F' and denote by P, its irreducible polynomial over E,.

We prove that its degree is a power of p. All the coefficients lie in a finite prime-to-p
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extension of E. Without loss of generality, we may assume that E, () is nontrivial. If
the degree of x over E, is prime to p, then E, (), which is a nontrivial extension of E,,
contradicts the maximality of E,. Write p"m the degree of x over E, with n,m > 1
and (m,p) = 1. Let F be the normal closure of F' in E; ; it is a Galois extension of
E, whose degree over L, is divisible by p™m. If m # 1, then a Sylow p-subgroup S(p)
of Gal(Fn/Eyy) is a nontrivial proper subgroup and the fixed field F ]\S,(p ) is a nontrivial

prime-to-p extension of F(,, which is absurd. Thus m = 1 and the result follows. O
The previous result leads to the following definition.

DEFINITION 2.3. A field that has no nontrivial finite extensions of degree prime to a

prime number p is called p-primary.

PROPOSITION 2.4. Let I be a nontrivial finite extension of Eyy contained in Eg and
let p™ be the degree [F' : Eyy|. Then there is a tower of fields

E<p>:F1CF2C"'CFn:F
such that [F; : F;_1] = p.

Proof. We prove the result by induction on n. We need to find a subfield K of F' whose
degree over Ey, is p"~'. The group G = Gal(E,/Ey,) is a pro-p-group since all finite
extensions of Fy, contained in £, are p-power extensions. Galois theory implies that F’
is the fixed subfield of a subgroup H of G with [G : H| = p™. We will find a subgroup Hy,
such that H C Hy C G and [G : H,] = p"~!. Letting K = Ef' we will get the desired
subfield K.

The group H is subgroup of GG of finite index hence is open. By the class equation, it
also follows that H has only a finite number of conjugates in G. Let H' = Nyeqz ' Hu,
then H' is an open normal subgroup of G containing H. The group G/H’ is a finite
p-group containing H/H'. By the Sylow theorems, we can find H;, normal in G, with
H C Hy C G and [G: H] = p"!. This ends to proof. O

Similarly, we obtain the following result.

LEMMA 2.5. Let p be a prime number and E a p-primary field. Let F/E be a finite
extension (not necessarily separable).

1. The field F inherits the property of having no nontrivial finite extension of degree
prime to p.

2. If F # E, then there exists a subfield E C F' C F such that F'/E is a normal
extension of degree p.
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Proof. (See also [GS17, Lemma 7.3.7])

1.

2.2

Let L/F be a finite extension of degree prime to p.

If L/F is separable, take the Galois closure L. Since E is a p-primary field, the
fixed field of a p-Sylow subgroup in Gal(L/E) must equal E, hence L = F.

If F/E is purely inseparable, then L/F must be separable, thus L/F has a subfield
Ly = E separable unless L = F'.

If F/E is separable but L/F' is not, then we may assume that L/F is purely insep-
arable. Taking a normal closure L, the fixed field of Autg(L) defines a nontrivial

prime to p extension of E unless L = F.

The second statement is straightforward in the case when the extension F/E is
purely inseparable (see [Sta2ll, Section 9.14, tag 09HD]), so by replacing F’ with the
maximal separable subextension of F//E, we may assume that F'/E is a separable
extension. Denote by F' the Galois closure of F. The first statement implies that
the Galois group G := Gal(F/E) is a p-group. Let H be a maximal subgroup of
G containing Gal(F'/F). By the theory of finite p-groups (see [Suz82, Corollary of
Theorem 1.6]), it is a normal subgroup of index p in G, so we may take F’ to be its
fixed field.

Milnor-Witt K-theory

We describe the Milnor-Witt K-theory, as defined by Morel (see [Morl2l, §3] or [Fas20),
§1.1] or [Fel20al §1]).

DEFINITION 2.6. Let E be a field. The Milnor-Witt K-theory algebra of E is defined
to be the quotient of the free Z-graded algebra generated by the symbols [a] of degree 1

for any a € E* and a symbol n in degree —1 by the following relations:

[a][l —a] =0 for any a € E* \ {1}.
[ab] = [a] + [b] + m[a][b] for any a,b € E*.
nla] = [a]n for any a € E*.

n(nl=1+2)=0.

The relations being homogeneous, the resulting algebra is Z-graded. We denote it by
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REMARK 2.7. e By definition of the Milnor K-theory of a field KM(E), we have a

natural isomorphism
K"W(E)/n =~ Ki(E)

given by [a] — [a],n — 0 (for any natural number n > 0).

o If p: E — F is a field extension, then we have a map
resp/p : KMW(E) - KMY(F)

given by [a] — [¢p(a)],n — n, and called the restriction map.
2.8. NOTATION We will use the following notations.
e [ay,...,a,] =]ai]...|ay] for any ay,...,a, € E*.
e (a) =1+ na] for any a € E*.
o c=—(—1).
o n.=> 1 ((=1)1) for any n > 0, and n. = e(—n). if n < 0.

EXAMPLE 2.9. If a € E*, we also denote by (a) the class of the bilinear form (X,Y) —
aXY in GW(E), the Grothendieck-Witt group of E [Lam05, Chapter 1]. According to
[Mor12, Lemma 3.10], the map (a) — 1 + na| defines a canonical isomorphism

GW(FE) ~ KYW(E)
and the multiplication by 7 induces an isomorphism
W(E) ~ KMWV(R)
for any n < 0 (where W (FE) is the Witt group of F, see [Lam05, Chapter 1|).

2.10. TWISTED MILNOR-WITT K-THEORY Let E be a field and Lg a 1-dimensional
vector space over £. The group E* of invertible elements of E acts naturally on L5, the

set of non-zero elements in Lg ; hence the free abelian group Z[L%] is a Z[E*]-module.
Define

KMY(E, Lg) = KNW(E) @5+ Z[LF).

Let L and L' be two line bundles over E, and n,n’ two integers. The product of

the Milnor-Witt K-theory groups induces a product
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KnMW(E, ﬁE) X K%W(E, CIE) — Kan/<E, Lr® ElE)
(x@L2 @) — (z2') @ (IR).
2.11. RESIDUE MORPHISMS (see [Morl12, Theorem 3.15]) Let E be a field endowed with

a discrete valuation v. We choose a uniformizing parameter 7. As in the classical Milnor

K-theory, we can define a residue morphism
0y KIW(E) — KT (k(v))
commuting with the multiplication by 1 and satisfying the following two properties:
o O ([m ai,...,a,)) =[ai,...,a,) for any ay,...,a, € OF.
e J/(lai,...,a,)) =0 for any ai,...,a, € OF.

The main difference between Milnor and Milnor-Witt K-theory is that this morphism does
depend on the choice of 7. Indeed, if we consider another uniformizer 7’ and write 7’ = un
where v is a unit, then we have 07 (z) = (u)07 (z) for any x € KMW(E). Nevertheless, by
twisting by the dual of the normal cone w, = (m,/m?)", we can define a twisted residue

morphism that does not depend on 7:
0y KMW(E, Lp) = KM (k(v),wy ® L)
t@ 1 I (z) @ (7* @ 1)

where L and L,,) are the pullbacks of a free rank 1 module £ over O,,, 7 is the canonical

projection of 7 modulo m, and 7* the dual of 7 (i.e. its canonical associated linear form).

2.3 Transfers

Recall the definition of transfers on Milnor-Witt K-theory; the definition for Milnor-Witt
K-theory is analogous to the definition for Milnor K-theory of Bass and Tate (see [BT73],
see also [GS17]).

THEOREM 2.12 (Homotopy invariance). Let F' be a field and F(t) the field of rational

functions with coefficients in F' in one variable t. We have a split short exact sequence
res d
0—KMV(P)SKMY(F(t) S @xE(A}?)(l) KMW(k(x),w,) —0

where res = resp)/p i the restriction map defined in and d = ®x€(A1 ) 0, 1s the
F
sum of the residue maps defined in [2.11]

Proof. See |Morl2, Theorem 3.24| (actually, Morel does not use twisted sheaves but
chooses a generator for each w, instead, which is equivalent. Note also that the choice of
a generator for each w, is the same as a choice of uniformizer for the valuations corre-

sponding to the closed points). O
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2.13. Let ¢ : E — F be a monogenic finite field extension and choose x € F' such that
F = E(z). The homotopy exact sequence implies that for any 8 € KYW(F,wp/;) there
exists v € KMV(E(t), wpq)) with the property that d(v) = 3 (note that we identify the
element § with a tuple in a direct sum of Milnor-Witt groups which has one entry g and

all other entries 0). Now the valuation at co yields a morphism
Oce : KW (E(), wpn k) — KW (B, wipe)

which vanishes on the image of resg),z. We denote by Tr, /() the element —0.(7); it

does not depend on the choice of v. This defines a group morphism
TI‘I/E' : KE/IW(E(I‘),WF/]C) — KE/IW(E,WE/]C)

called the transfer map and also denoted by Tr,,p. The following result completely

characterizes the transfer maps.

LEMMA 2.14 (projection formula). Keeping the previous notations, let o € KMW(E)
and 8 € KMY(E(x)). We then have

Try/p(respw)/e(a) - B) = a - Tryp(6).

Proof. Tt suffices to prove the result for a = [u] with u € E*. Let v € KYWV(E(t), wg k)
such that d(y) = . It follows from [Morl2l, Proposition 3.17] that for any valuation v, we
have 0,([u]y) = —(=1)[@]0,(7). Thus —(—1)[u]y is a lift of [u]f and Ou(—(—1)[u]y) =
[u]9y(v). Thus Tr,/p(respe)/p(e) - 8) = a - Tryp(B). 0

LEMMA 2.15. Keeping the previous notations, let
d= (P, d:) ® deo : KEV(E(t), wpeyn) = (B, KMW(E(2), wp@m) ® KMW(E, wek)

be the total twisted residue morphism (where x runs through the set of monic irreducible

polynomials in E(t)). Then, the transfer maps Tr, /g are the unique morphisms such that

Y o(Try/pody) + do = 0.
Proof. Straightforward (see [Morl2l §4.2|). O

DEFINITION 2.16. Let F' = E(xq,x9,...,2,) be a finite extension of a field £ and

consider the chain of subfields
E C E(Z’l) C E(Z’l,afg) c---C E(I’l, c. ,Qf,n) =F.

Define by induction:
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We give an elementary proof of the fact that the definition does not depend on the
choice of the factorization (see [Morl2, Theorem 4.27| for the original proof):

THEOREM 2.17. Let F = E(xy,...,x,)/E be a finite field extension. Then the map

does not depend on the choice of the generating system (xq,...,x,).

3 Proof of the main theorem

3.1 Reduction to the p-primary case

We begin with a series of lemmas aimed at reducing Theorem to the case of p-primary
fields.

LEMMA 3.1. Let F/E be a finite extension of degree n of characteristic zero fields and
consider the transfer map Trp/p : GW(F) — GW(E). If n is odd, then

TI‘F/E(l) = T¢.

If n is even, then there exist ay,...,a, € E* such that

Trpye(l) =D ).

Proof. See [Lam05, VII.2.2]. Note that the case n even is not really much information, it

is merely the diagonalizability of quadratic forms. m

LEMMA 3.2. Let E be a field of characteristic p > 0. Let « € GW(E) be an element
in the kernel of the rank morphism GW(E) — Z. Then « is nilpotent in GW(E).

Proof. The result is not surprising: in Witt rings, torsion elements are nilpotent, and in
characteristic p > 0, then kernel of the rank morphism is torsion.

We give a detailed proof following |[LYZ19, Lemma B.4]. As the set of nilpotent
elements in the commutative ring GW(FE) is an ideal, we may assume a = (t) — 1 where
t € EX. We have (1 + a)®> = (t*) = 1, so that o* = —2a. By induction, we get
a" = (=2)"'a for n > 1: we have to show that « is annihilated by a power of two.
If p =2, 2a = 0 holds (see [Mor12, Lemma 3.9]), i.e. o* = 0. Now we assume p > 3
so that there is no danger thinking in terms of usual quadratic forms. We first consider
p = (=1) =1 € GW(F,). The quadratic form —z? — y* over F, represents 1 (see
[Ser77, Proposition 4,81V.1.7]) so that (—1) + (—1) = (1) + (1) € GW(F,), ie. 2u =

0 € GW(F,),which gives y> = 0. Let t € E* be any nonzero element in an extension
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E of F,. The quadratic form ¢(x,y) := 2? — y*> = (x + y)(x — y) represents ¢ (this
is q((1 +1¢)/2,(1 —t)/2)), which easily implies that (1) + (—1) = (t) + (—t) (see also
[Mor12, Lemma 3.7]. This is equivalent to saying (2 + pu)a = 0 € GW(E). It follows that
da = (2 — p)(2+ p)a = 0, and then o = 0. O

LEMMA 3.3. Consider two finite extensions F//E and L/E of coprime degrees n and
m, respectively. Let x € KMW(E) such that resp/p(x) = 0 =resy p(zx). Then x = 0.

Proof. Applying the transfer map to resp/g(x) and resy p(x), we see that x is killed by
Trp /(1) and Tryg(1), thanks to the projection formula (note that the transfers here are
transfers for the Grothendieck-Witt ring, identified with K§™).

In characteristic 0, up to swapping n and m, we may assume that n is odd, hence
Trp/p(1) = ne and Trp/p(1) = > (a;) for some ay,...,a, € E*. Write n = 2r + 1.
There exist a,b € Z such that an + bm = r since n and m are coprime. Recall that the
hyperbolic form h = 1 4+ (—1) satisfies {(a;)h = h for any i (see [Morl2, Lemma 3.7|).
Hence rh = (ane +0),(a;))h and 1 =n. —rh = (1 — ah) Trp/g(1) — bh Trp p(1) kills .

In characteristic p > 0, there exist two nilpotent o and o in GW(E) such that
Trpyp(1) = n+ a and Try/p(1) = m 4 o, according to Lemma [3.2] Hence for a natural
number s large enough, the element x is killed by the coprime numbers n?" and m?" so
that =z = 0. [

LEMMA 3.4. Let E be a field. Let Fi,...,F, be finite extensions of coprime degrees
di,...,d,. Let 6 € KMW(E) be an element such that vesp,/i(0) = 0 for any i. Then, § is

ZET0.

Proof. This follows as in Lemma [3.3]
O

LEMMA 3.5. Let F/E be a field extension and w be a valuation on F' which restricts to

a nontriwial valuation v on E with ramification index e. We have a commutative square

KM(E) —— K (5(v), wy)

I'eSF/El J/eg resn(w)/n(v)

KIMW(F) —— KW (n(uw), )
where e, = 3¢ (—1)""",
Proof. See [Morl12, Lemma 3.19]. O

LEMMA 3.6. Let F'/E be a field extension and x € (A};)(l) a closed point. Then the

following diagram
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TYz/E

By feSF(y)/E(m)l lresF/E

D,_.. K'(F(y), wrwn) KYY(F, wep)

K*MW(E, (JJE/k)

Zy Cy,e Try/F

is commutative, where the notation y — x stands for the closed points of AL lying above
z, and e, = S50 (=1)"" is the quadratic form associated to the ramification index of

the valuation v, extending v, to F(t).

Proof. According to Lemma [3.5] the following diagram

KYW(E(t)) — 2 KMY (B(x), w,)

reSF(t)/E(t)J l@yeyye TeSp(y) /E(x)

KYW(E() 50 Dy KXY (F (1), w))

is commutative hence for all closed points in PL, we have
0y (resp( /() OPe — (Bypy) © (Byey.c 1eSF(y)/m(@)) = 0
and so the diagram
KYW(E(t)) +—"— K"V (E(z),w,)
resF(t)/E(wl l@yey,e TeSF(y)/B(x)
KYW(E() 4 Dye K™ (F (1), wy)

is commutative, where p, is the splitting of Theorem [2.12] Then, we conclude according
to the definition of the Bass-Tate transfer maps[2.13] O

REMARK 3.7. The multiplicities e, appearing in the previous lemma are equal to
[E(x) : EL/[F(y) : Fl;
where [E(x) : EJ; is the inseparable degree.

THEOREM 3.8 (Strong Rlc). Let E be a field, F/E a finite field extension and L/E
an arbitrary field extension. Write F' = E(x,...,z,) with x; € F, R = F ®p L and
Y, : R — R/p the natural projection defined for any p € Spec(R). Then the diagram

KiVIW(F, wp/k) Ki\/[W(E,wE/k>

Dp res(R/p)/Fl J{resL/E

KMW KYW(L,wp k)

D especry K (B/D, W(ryp) k)
2op(

mp)e Tryp,(ar),....op(ar) /L

is commutative where my, is the length of the localized ring R,).
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Proof. We prove the theorem by induction. For r = 1, this is Lemmal[3.6] Write E(z1) ®@p
L=T1] ; R for some Artin local L-algebras R;, and decompose the finite dimensional L-
algebra F' Qp,) Rj as ' Qp,) R = L, Ri; for some local L-algebras R;;. We have
F®p L ~ [],; Rij. Denote by L; (resp. L;;) the residue fields of the Artin local L-
algebras R; (resp. R;;), and m; (resp. my;) for their geometric multiplicity. We can
conclude as the following diagram commutes

TrIl»n-aIr/E Trzl/E

KYW(F, wpyr) KI™W(E(21), W) /x) KYW(E, we )
Dij resLij/Fl JEB TeSL . /B(x1) JresL/E

Dy KW (L or, ) @D, KM (L;,wr ) KMW(L, w2
J» % Lij - jrWL;/k L/k
7 ) i/ - 1)ETrwij(21) YYYYY vijerr /Ly J ok yWL;/ >oj(my)e Try (w1)/L * y WL/

since both squares are commutative by the inductive hypothesis, the case r = 1, and the

multiplicity formula (mn). = men, for any natural numbers m, n. O

THEOREM 3.9. Assume that Theorem holds for all p-primary fields E for any
prime number p. Then the theorem holds for any field E.

Proof. Consider two decompositions

E C E(xy) C E(xy,29) C--- C E(21,...,2,) = F.
and

ECE(h) C E(y1,y2) C--- C Eyy,...,ys) = F.

of F. Let € KMW(F) and denote by § the element Tr,, . /g(a) — Try, . 6(Q).
Fix p a prime number and let L be a maximal prime to p extension of E (L has no
nontrivial finite extension of degree prime to p). With the notation of Theorem ,
the map Zp(mp)6 Try, (21),....05 (2,)/L does not depend on the choice of x; according to the
assumption. Hence resy/p(d) = 0 and we can find a finite extension L,/ E of degree prime
to p such that res; ,5(6) = 0. Since this is true for all prime number p, we see that the
assumption of Lemma are satisfied. Thus § = 0 and the theorem is proved. O

3.2 Proof in the p-primary case

PROPOSITION 3.10 (Bass-Tate-Morel Lemma). Let F(x) be a monogenic extension of
F. Then KMW(F(x)) is generated as a left KMW(F)-module by elements of the form

"7m ’ [pl(SE),pQ(CL’), s ,pn(x)]

where the p; are monic irreducible polynomials of F[t] satisfying
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deg(p1) < deg(ps) < --- < deg(pn) <d—1
where d is the degree of the extension F(x)/F.

Proof. Straightforward computations (see also [Mor12, Theorem 3.24 and Lemma 3.25.1]).
[l

COROLLARY 3.11. Let F/E be a finite field extension and assume one of the following

conditions holds:
e F'/E is a quadratic extension,

e ['/E is a prime degree p extension and E has no nontrivial extension of degree prime

to p.
Then KMW(F) is generated as a left KMW(E)-module by F*.

Proof. In both cases, the extension F'/FE is simple and the only monic irreducible poly-
nomial in E[t] of degree strictly smaller than [F : E] are the polynomials of degree 1. We
conclude by Proposition [3.10] O

In the following, we fix a prime number p and E a p-primary field.

PROPOSITION 3.12. Let F' = E(z) be a monogenic extension of E of degree p. Then
the transfers Try/p : KYW(E(2), wp@m) — KYW(E,wg/,) do not depend on the choice

of x.
Proof. According to Lemma m, the group KMW(F,wp/y) is generated by products of
the form resp/p(a) - [8] with a € KMW(E, wg/) and § € F*. According to [2.14} we have

the projection formula

Try p(respp() - [B]) = o Tre/p((8]).
It remains to prove that the right-hand side Trp/g([8]) € K}'W(E) does not depend on a

choice of z. For that, we consider the Cartesian square

KYW(E) ——I(E)

| |

K)'(E) —— L(E)/T*(E)
where K)M(E) = E* and I(E) is the fundamental ideal (we refer to the proof of [Fas20)

Theorem 1.4] with the following remarks: ibid. assume the characteristic to be different
from 2 but this is not necessary according to [Morl2, Remark 3.12|; the proof of ibid.
uses Voevodsky’s affirmation of Milnor conjecture but this is not needed in our case since

we only work in degree n = 1).
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By naturality of the previous square, we are reduced to proving the independence of
the transfer map for the two cases KM(E) = E* and I(E) which we assume to have
elementary proofs somewhere in the literature (recall that a non-elementary proof of
Proposition can also be found in [Mor12, Chapter 5|). Indeed, for KM(E) = E*, the
transfer map is nothing but the Galois norm; for I(E), we only have to consider the two
cases where FE(z)/F is a purely inseparable extension or a separable extension, which are
true in characteristic # 2 according to [Fas08, Lemma 6.4.6] and [Fas20, Example 1.23]
(in characteristic 2, we believe the work of Fasel on Witt transfers could be extended
but, for the present article, we simply refer to the book of Morel, e.g. [Morl2, Proof of
Corollary 5.2 in the case r = 1]). O

REMARK 3.13. We may now use the notation Trp/p : KMWY(F, WE/k) — KMWY(E, WE/k)
if F'/FE is a field extension of prime degree p.

PROPOSITION 3.14. Let F be a field complete with respect to a discrete valuation v,
and F'/F a normal extension of degree p. Denote by v' the unique extension of v to F'.

Then the diagram

0,
K(E wpr ) —— K (5(0), wegen)

T‘rF’/FJ/ J/T‘rn(v/)/lq(v)

KMW(F) s KM (x(v))

15 commutative.

Proof. This is a particular case of [Morl2, Remark 5.20] (the completeness assumption
is not needed). We note that the proof of [Morl2, Remark 5.20| does not depend on
[Mor12, Lemma 5.5] (thus there is no loophole in the proof of Theorem [2.17)). Moreover,
even though the proof of [Mor12, Remark 5.20] is only three pages long, we hope that the

completeness assumption could lead to a shorter proof. n

COROLLARY 3.15. Let F/E be a normal extension of degree p and let v € (AL)W
Then the diagram

@0,
KyW(F(t)7wF(t)/k) - Yy KMW(“( )
TrF(t)/E(t)l > Tri(y) /n(x)
KB (), wpom) —5— KV (K(2), Wit )

is commutative, where y — x denotes the set of elements y € (AL)Y) mapping to x through

the canonical morphism.
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Proof. Denote by E, (resp. F,) the completions of E(t) (resp. F(t)) with respect to the
valuations defined by = (resp. y). Consider the following diagram

A~ @(‘)y
KYW(F(t), wreye) —— @y KEV (Fy,wp 1) — @, KiY (5(y), Wiy n)

TrF(t)/E(t)l lz Tre /o, lz Tr(y)/r(a)

~ Oy
KYW(E(t), wpm) ——— KMV (B wg, ) K2 (R(2), wna) )-

The left-hand square is commutative according to Theorem [3.8] The right-hand square

commutes according to Proposition [3.14) Hence the corollary. O

LEMMA 3.16. Let L/E be a normal extension of degree p, and let E(a)/E be a mono-
genic finite extension. Assume that L and E(a) are both subfields of some algebraic

extension of E, and denote by L(a) their composite. Then the following diagram

Tr,
KiVIW(L(a), wL(a)/k) /—L> KiVIW(L, wL/k)

TrL<a>/E(a>l lT‘fL/E

KiMW(E(a)’ wE(a)/k) TY—/£ Ki\/[W(E, wE/k)

15 commutative.

Proof. First of all, we note that the vertical maps are independent of choices by Lemma
(note that if L = F(a), then Trp()/p@) = Id does not depend on any choices). Let
x (resp yo) be the closed point of AL (resp. Al) defined by the minimal polynomial of a
over E (resp. L). Given a € KMWV(L(a),wra)k), we have Try/p(a) = —0x(f) for some
B € KMYW(L(t), wr k) satistying 0, (8) = a and 9,(8) = 0 for y # yo. By Corollary [3.15

o (Trry /e (B)) = 2o ymss Tty /n(@) (0y(B)) = Tri(yo)/m@) (),

and, similarly, Ou (Trr ) @ (8)) = 0 for x # a'. Hence by definition of the transfer map

Tr,/p we have

Tra/E(TrL(a)/E(a)(a)) = —5oo(TTL(t)/E(t)(/8))-

Moreover, since the only point of P} above co is oo, another application of Corollary

gives

Ooo(Trr)/E)(B)) = Trr (0 (B))-

Hence the result.

Tro/p(TrLa)/ ) (@) = — Trr/5(0(8)) = Trpp(Tren(a)).
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Proof of Theorem[2.17. We keep the previous notations. We already know that it suffices
to treat the case when E has no nontrivial extension of degree prime to p (according to
Theorem . Let p™ be the degree of the extension F'/E. We prove the result by induc-
tion on m. The case m = 1 follows from Proposition [3.12] Consider two decompositions

EC E(iEl) C E(l’l,mg) c---C E(ml,...,xr) =F.
and
ECE@) CEyLy) C-- CE,...,ys) = F.

of F. By Lemma 2.5 the extension E(z;)/E contains a normal subfield E(z}) of de-
gree p over E. Applying Lemma with @ = 2z and L = E(2}) yields Tr, /g =
Try /g 0Ty, /B Hence, without loss of generality, we may assume that z; = 7 and,
similarly, [E(y;) : E] = p. Write Fy for the composite of the fields E(z;) and E(y;) in F
and write F' = Fy(zy,...,2) with z; € F. The fields F(z;) and E(y;) have no nontrivial

prime to p extension, thus we may conclude by the induction hypothesis that the triangles

KYWV(E(21), wp(a1)/r)

Tr
Z1 5y zt/Fp
l Trry/B(aq)

and

Tr s/E(y1)
S KMY(E(y), weg k)

Tr
Z]5eens z¢/Fo
J Trry/Ewr)

are commutative.
Moreover, Lemma for a = x; and L = E(y;) implies that the following diagram

Trry/B(ey)
KV (B, wr ) — 2 KW (E(01), wisen 1)

TrFo/E(ynl lTrzl/E

KW (E(y1), wegy)/r) T/E) KYW(E, wg/)

is commutative. Putting everything together, we conclude that Tr,, . . /g = Try, ., /6.

]
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3.3 Applications in motivic homotopy theory

We end this section with a discussion of a conjecture of Morel in motivic homotopy
theory. Milnor-Witt K-theory is a fundamental object in motivic homotopy theory since it
computes the homotopy groups of spheres (in the sense of [Mor12, Chapter 6|). Moreover,
Milnor-Witt K-theory is a particular case of the notion of homotopy sheaf as defined below.

3.17. Consider M € HI(k) a homotopy sheaf, i.e. a Nisnevich sheaf over the category of
smooth k-schemes Sm; with value in the category of abelian groups and satisfying the

following property (strong Al-invariance): for any smooth scheme X, the map
HY(X, M) — H'(AY M)

of Nisnevich sheaf cohomology groups induced by the canonical projection Al — X is a
bijection for i € {0, 1}.

For instance, the Milnor-Witt K-theory KMW in degree n defines a homotopy sheaf
(for any fixed integer n).

Recall that the contraction of M is the sheaf defined by

X 5 ker(M(Gy, x X) — M(X))

and is denoted by M_q; this is again a homotopy sheaf. Moreover, M_; has a structure

of GW-module and, for any valued field (F,v), we have a (twisted) residue map
M(F) = M(k(v),w,) := M(K(v)) ®zjrw)] Llw].

3.18. Let M be a homotopy sheaf and M_; its contraction. We recall the construction

of the Bass-Tate transfer maps
TI‘w = TI"F/E : M_l(F, wp/k) — M_l(E,wE/k)
defined for any finite map ¢ : £ — F' of fields.

THEOREM 3.19. Let M € HI(k) be a homotopy sheaf. Let F' be a field and F(t) the
field of rational functions with coefficients in F' in one variable t. We have a split short

exact sequence
0— M(F)™ M(F(t)) % D, ey Mor(h(@),ws) =0
where d = @xe(Al y 0, 1s the usual differential (see [Morl2, Chapter 4]).
F

Proof. See [Mor12, §4.2, page 97| and [Morl2, Theorem 5.38]. O

DEFINITION 3.20 (Coresidue maps). Keeping the previous notations, the fact that the

homotopy sequence is split allows us to define coresidue maps



Transters on Milnor-Witt K-theory 19

pa: M_a(k(x), ws) = M(F(t))
for any closed points z € (A}?)(l), satisfying 0, o p, = ld () and 0, 0 p, = 0 for & # y
where y € (A})(l).

DEFINITION 3.21 (Bass-Tate transfers). Let M € HI(k) be a homotopy sheaf. Let F
be a field and F'(t) the field of rational functions with coefficients in F' in one variable t.
For x € (A};)(l), we define the Bass-Tate transfer

Tryyp o My (F(2),wr@)k) = M1 (F,wrk)
by the formula Tr,/p = —0s 0 ps.

REMARK 3.22. There is also an equivalent definition of the Bass-Tate transfers that

does not use the coresidue maps (see [Morl2), §4.2]).

DEFINITION 3.23. Let F' = E(x1,x2,...,2,) be a finite extension of a field £ and

consider the chain of subfields
E C E([L‘l) C E(I‘l,xQ) cC---C E(%,'-.,%) - F

Define by induction:

Conjecture 3.24 (Morel conjecture). Let F' = E(xy,...,x,)/E be a finite field extension.
Then the map

or/B My (Fwpe) = M1 (E, wgyk)

-----

does not depend on the choice of the generating system (x1,...,z,).

REMARK 3.25. 1. This was claimed by Morel in [Mor12, Remark 4.31] and [Mor11]

Remark 5.10] (see also [Bac20, Remark 4.3] for a similar conjecture).

2. Morel proved in [Morl2, Chapter 4] that the conjecture is true if the contracted
homotopy sheaf M_; is replaced by M_,. The proof of Morel uses in a fundamental
way the cohomology group H?((P')?, M_5) and cannot be easily applied to prove

the conjecture in full generality.

3. In [Fel20bl, Theorem 6.1.6], the author proved that, if M is a homotopy sheaf, then
Conjecture [3.24] is true if and only if M has a structure of Milnor-Witt transfers

(or, equivalently, a structure of framed transfers).

4. We also know that the conjecture is true in full generality if we work with rational
homotopy sheaves Mg _; (see [Fel20b, Theorem 4.1.19]).
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Following the ideas of the previous section, we can reduce the conjecture to the case
of p-primary fields.

THEOREM 3.26. In order to prove Conjecture (i.e. a contracted homotopy sheaf
M_y has functorial transfers), it suffices to consider the case of p-primary fields (where p

is a prime number).

Proof. We can use verbatim the proof of Theorem [3.9] where Theorem [3.§] is replaced by
[Fel20b, Theorem 4.1.16] and Lemma still applies thanks to more general projection
formulas [Fel20b, Theorem 4.1.15]. O

We still have hope to prove the conjecture in full generality with the help of the

previous theorem.
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