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Abstract

We study the existence of transfers on a generalization of Milnor K-theory called
Milnor-Witt K-theory. We give a new proof of the fact that Milnor-Witt K-theory
has geometric transfers. Moreover, we explain how our proof yields a simplification of
Morel’s conjecture about Bass-Tate-Kato transfers on contracted homotopy sheaves
in the context of motivic homotopy theory.
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1 Introduction

1.1 Current work

In the beginning of the century, Morel (in joint work with Hopkins) defined for a field E the
Milnor-Witt K-theoryKMW

∗ (E) (see [Mor12, Definition 3.1]). This Z-graded abelian group
behaves in positive degrees like Milnor K-theory groupsKM

n (E) (or rather its fibre product
with powers of the fundamental ideal), and in non-positive degrees like Grothendieck-Witt
and Witt groups of quadratic forms, GW(E) and W(E). The Milnor-Witt K-theory was
originally used for solving some splitting problems for projective modules (see e.g. the
work of Barge and Morel [BM00]). Since then, Milnor-Witt K-groups have proven to be
relevant for motivic homotopy and its applications in algebraic geometry.

The word "transfer" has many incarnations in mathematics. Philosophically, a transfer
is a way to pass on information from one world to another. In K-theory and algebraic
geometry, transfers are maps related to pushforwards or maps that go in the wrong way.
For instance, in [BT73], Bass and Tate defined a map

Trx/F : KM
∗ (F (x))→ KM

∗ (F )

for any monogenic extension of fields F (x)/F . Unfortunately, the natural definition given
by Bass and Tate had one issue: the map Trx/F may depend on the choice of generator
x. This raises the question of functoriality of such transfer maps. In 1973, Bass and Tate
conjectured that such transfers are well-defined but a proof appeared only a decade later
in the work of Kato [Kat80].

The study of transfers has a long history in motivic homotopy theory (see [FSV00,
Dé12, Fas08, GP18, BCD+20, Fel21]). In [Mor12, Chapter 4], Morel introduced transfers
on the Milnor-Witt K-theory of a field. Following ideas of Bass and Tate [BT73], one can
define geometric transfer maps

Trx1,...,xr/E = Trxr/E(x1,...,xr−1) ◦ · · · ◦ Trx1/E :

KMW
∗ (E(x1, . . . , xr), ωE(x1,...,xr)/E)→ KMW

∗ (E)

on KMW
∗ for finite extensions E(x1, . . . , xr)/E (see the next section for more details).

Morel proved in [Mor12, Chapter 4] that such transfers are well-defined and functorial.
The relevance of ωE(x1,...,xr)/E for making the transfers independent of choices of generating
elements is hinted by the fact that the naive definition of the residue map ∂πv of a discrete
valuation depends on the choice of prime π (see [Mor12, Remark 3.20]).

In this article, we give a new (shorter) proof of this result:

Theorem 1 (Theorem 2.17). Let E(x1, . . . , xr)/E be a finite extension of fields. The
transfer map
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Trx1,...,xr/E : KMW
∗ (E(x1, . . . , xr), ωE(x1,...,xr)/E)→ KMW

∗ (E)

does not depend on the choice of the generating system (x1, . . . , xr).

The idea is to reduce to the case of p-primary fields (see Definition 2.3) then study
the transfers manually, as Kato originally did for Milnor K-theory (see [GS17] for an
elementary exposition).

Moreover, this proof applies to the study of a conjecture of Morel about the existence
of transfer maps for (contracted) homotopy sheaves:

Theorem 2 (Theorem 3.26). In order to prove that a contracted homotopy sheaf M−1
has functorial transfers, it suffices to consider the case of p-primary fields (where p is a
prime number).

1.2 Outline of the paper

In Subsection 2.1, we recall some properties of fields called p-primary fields. For p a prime
number, a p-primary field has no nontrivial finite extension prime to p (see Definition 2.3).
In Subsection 2.2 and Subsection 2.3, we give the basic definitions of Milnor-Witt K-theory
In Subsection 3.1 and Subsection 3.2, we prove that Milnor-Witt K-theory has transfer
maps which are functorial. The proof is similar to the original proof of Kato for Milnor
K-theory: we reduce to the case of p-primary fields then study the transfers manually. In
Subsection 3.3, we end with a discussion of a conjecture of Morel in motivic homotopy
theory by applying ideas from Subsection 3.1.

1.3 Acknowledgements

I deeply thank my two PhD advisors Frédéric Déglise and Jean Fasel, and my two PhD
referees Marc Levine and Paul Arne Østvær. Moreover, I am extremely grateful to the
anonymous referee for taking the time to review this paper.

2 Definitions

Notation

Throughout the paper, we fix a (commutative) field k and we assume moreover that k is
perfect (of arbitrary characteristic).

By a field E over k, we mean a finitely generated extension of fields E/k.
Let E be a field (over k) and v a valuation on E. We will always assume that v is

discrete. We denote by Ov its valuation ring, by mv its maximal ideal and by κ(v) its
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residue class field. We consider only valuations of geometric type, that is we assume:
k ⊂ Ov, the residue field κ(v) is finitely generated over k and satisfies tr. degk(κ(v))+1 =

tr. degk(E).
Let f : X → Y be a morphism of schemes. Denote by Lf (or LX/Y ) the virtual

vector bundle over Y associated with the cotangent complex of f , and by ωf (or ωX/Y )
its determinant. Recall that if p : X → Y is a smooth morphism, then Lp is (isomorphic
to) Tp = ΩX/Y the space of relative (Kähler) differentials. If i : Z → X is a regular closed

immersion, then Li is the normal cone −NZX. If f is the composite Y
i // PnX

p
// X

with p and i as previously (in other words, if f is lci quasi-projective), then Lf is isomor-
phic to the virtual tangent bundle i∗TPnX/X −NY (PnX). In practice, we mostly work with
smooth schemes hence every map (between smooth schemes) is lci quasi-projective.

Let X be a scheme and x ∈ X a point. Specializing the previous notations, we denote
by Lx = LSpec(κ(x))/X = (mx/m

2
x)
∨ and ωx its determinant. Similarly, let v a discrete

valuation on a field, we denote by ωv the line bundle (mv/m
2
v)
∨.

Let E be a field. We denote by GW(E) the Grothendieck-Witt ring of symmetric
bilinear forms on E (another equivalent definition of GW(E) is given in [Mor12, Lemma
3.9]. This is well-defined in characteristic 2 according to the work of Morel). For any
a ∈ E∗, we denote by 〈a〉 the class of the symmetric bilinear form on E defined by
(X, Y ) 7→ aXY and, for any natural number n, we put nε =

∑n
i=1〈−1〉i−1. Recall that if

n and m are two natural numbers, then (nm)ε = nεmε.

2.1 On p-primary fields

We recall some facts about fields (see [Sha82, §1] and [BT73, Section 5]). Let E be a field
and p a prime number. Fix a separable closure Es of E and consider the set of all sub-
extensions of Es that contain E and that can be realized as a union of finite prime-to-p
extensions of E. Zorn’s lemma implies that this set contains a maximal element E〈p〉 for
the inclusion.

Proposition 2.1. If F is a finite extension of E contained in E〈p〉, then its degree
[F : E] is prime to p.

Proof. Write F = E(x1, . . . , xr) with xi ∈ F . Each xi is contained in a prime-to-p
extension of E hence has a degree prime to p.

Proposition 2.2. If F is a finite extension of E〈p〉, then its degree [F : E〈p〉] is equal
to pn for some natural number n.

Proof. Let x be any element in F and denote by Px its irreducible polynomial over E〈p〉.
We prove that its degree is a power of p. All the coefficients lie in a finite prime-to-p
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extension of E. Without loss of generality, we may assume that E〈p〉(x) is nontrivial. If
the degree of x over E〈p〉 is prime to p, then E〈p〉(x), which is a nontrivial extension of E〈p〉,
contradicts the maximality of E〈p〉. Write pnm the degree of x over E〈p〉 with n,m ≥ 1

and (m, p) = 1. Let FN be the normal closure of F in Es ; it is a Galois extension of
E〈p〉 whose degree over E〈p〉 is divisible by pnm. If m 6= 1, then a Sylow p-subgroup S(p)

of Gal(FN/E〈p〉) is a nontrivial proper subgroup and the fixed field F S(p)
N is a nontrivial

prime-to-p extension of E〈p〉, which is absurd. Thus m = 1 and the result follows.

The previous result leads to the following definition.

Definition 2.3. A field that has no nontrivial finite extensions of degree prime to a
prime number p is called p-primary.

Proposition 2.4. Let F be a nontrivial finite extension of E〈p〉 contained in Es and
let pn be the degree [F : E〈p〉]. Then there is a tower of fields

E〈p〉 = F1 ⊂ F2 ⊂ · · · ⊂ Fn = F

such that [Fi : Fi−1] = p.

Proof. We prove the result by induction on n. We need to find a subfield K of F whose
degree over E〈p〉 is pn−1. The group G = Gal(Es/E〈p〉) is a pro-p-group since all finite
extensions of E〈p〉 contained in Es are p-power extensions. Galois theory implies that F
is the fixed subfield of a subgroup H of G with [G : H] = pn. We will find a subgroup H1,
such that H ⊂ H1 ⊂ G and [G : H1] = pn−1. Letting K = EH1

s , we will get the desired
subfield K.

The group H is subgroup of G of finite index hence is open. By the class equation, it
also follows that H has only a finite number of conjugates in G. Let H ′ = ∩x∈Gx−1Hx,
then H ′ is an open normal subgroup of G containing H. The group G/H ′ is a finite
p-group containing H/H ′. By the Sylow theorems, we can find H1, normal in G, with
H ⊂ H1 ⊂ G and [G : H1] = pn−1. This ends to proof.

Similarly, we obtain the following result.

Lemma 2.5. Let p be a prime number and E a p-primary field. Let F/E be a finite
extension (not necessarily separable).

1. The field F inherits the property of having no nontrivial finite extension of degree
prime to p.

2. If F 6= E, then there exists a subfield E ⊂ F ′ ⊂ F such that F ′/E is a normal
extension of degree p.
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Proof. (See also [GS17, Lemma 7.3.7])

1. Let L/F be a finite extension of degree prime to p.

If L/F is separable, take the Galois closure L̃. Since E is a p-primary field, the
fixed field of a p-Sylow subgroup in Gal(L̃/E) must equal E, hence L = F .

If F/E is purely inseparable, then L/F must be separable, thus L/E has a subfield
L0 = E separable unless L = F .

If F/E is separable but L/F is not, then we may assume that L/F is purely insep-
arable. Taking a normal closure L̃, the fixed field of AutE(L̃) defines a nontrivial
prime to p extension of E unless L = F .

2. The second statement is straightforward in the case when the extension F/E is
purely inseparable (see [Sta21, Section 9.14, tag 09HD]), so by replacing F with the
maximal separable subextension of F/E, we may assume that F/E is a separable
extension. Denote by F̃ the Galois closure of F . The first statement implies that
the Galois group G := Gal(F̃ /E) is a p-group. Let H be a maximal subgroup of
G containing Gal(F̃ /F ). By the theory of finite p-groups (see [Suz82, Corollary of
Theorem 1.6]), it is a normal subgroup of index p in G, so we may take F ′ to be its
fixed field.

2.2 Milnor-Witt K-theory

We describe the Milnor-Witt K-theory, as defined by Morel (see [Mor12, §3] or [Fas20,
§1.1] or [Fel20a, §1]).

Definition 2.6. Let E be a field. The Milnor-Witt K-theory algebra of E is defined
to be the quotient of the free Z-graded algebra generated by the symbols [a] of degree 1

for any a ∈ E× and a symbol η in degree −1 by the following relations:

• [a][1− a] = 0 for any a ∈ E× \ {1}.

• [ab] = [a] + [b] + η[a][b] for any a, b ∈ E×.

• η[a] = [a]η for any a ∈ E×.

• η(η[−1] + 2) = 0.

The relations being homogeneous, the resulting algebra is Z-graded. We denote it by
KMW
∗ (E).
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Remark 2.7. • By definition of the Milnor K-theory of a field KM
n (E), we have a

natural isomorphism

KMW
n (E)/η ' KM

n (E)

given by [a] 7→ [a],η 7→ 0 (for any natural number n ≥ 0).

• If φ : E → F is a field extension, then we have a map

resF/E : KMW
∗ (E)→ KMW

∗ (F )

given by [a] 7→ [φ(a)],η 7→ η, and called the restriction map.

2.8. Notation We will use the following notations.

• [a1, . . . , an] = [a1] . . . [an] for any a1, . . . , an ∈ E×.

• 〈a〉 = 1 + η[a] for any a ∈ E×.

• ε = −〈−1〉.

• nε =
∑n

i=1〈(−1)i−1〉 for any n ≥ 0, and nε = ε(−n)ε if n < 0.

Example 2.9. If a ∈ E×, we also denote by 〈a〉 the class of the bilinear form (X, Y ) 7→
aXY in GW(E), the Grothendieck-Witt group of E [Lam05, Chapter 1]. According to
[Mor12, Lemma 3.10], the map 〈a〉 7→ 1 + η[a] defines a canonical isomorphism

GW(E) ' KMW
0 (E)

and the multiplication by η induces an isomorphism

W (E) ' KMW
n (E)

for any n < 0 (where W (E) is the Witt group of E, see [Lam05, Chapter 1]).

2.10. Twisted Milnor-Witt K-theory Let E be a field and LE a 1-dimensional
vector space over E. The group E× of invertible elements of E acts naturally on L×E, the
set of non-zero elements in LE ; hence the free abelian group Z[L×E] is a Z[E×]-module.
Define

KMW
n (E,LE) = KMW

n (E)⊗Z[E×] Z[L×E].

Let LE and L′E be two line bundles over E, and n, n′ two integers. The product of
the Milnor-Witt K-theory groups induces a product
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KMW
n (E,LE)⊗KMW

n′ (E,L′E)→ KMW
n+n′(E,LE ⊗ L′E)

(x⊗ l, x′ ⊗ l′) 7→ (xx′)⊗ (l ⊗ l′).

2.11. Residue morphisms (see [Mor12, Theorem 3.15]) Let E be a field endowed with
a discrete valuation v. We choose a uniformizing parameter π. As in the classical Milnor
K-theory, we can define a residue morphism

∂πv : KMW
∗ (E)→ KMW

∗−1 (κ(v))

commuting with the multiplication by η and satisfying the following two properties:

• ∂πv ([π, a1, . . . , an]) = [a1, . . . , an] for any a1, . . . , an ∈ O×v .

• ∂πv ([a1, . . . , an]) = 0 for any a1, . . . , an ∈ O×v .

The main difference between Milnor and Milnor-Witt K-theory is that this morphism does
depend on the choice of π. Indeed, if we consider another uniformizer π′ and write π′ = uπ

where u is a unit, then we have ∂πv (x) = 〈u〉∂π′v (x) for any x ∈ KMW
∗ (E). Nevertheless, by

twisting by the dual of the normal cone ωv = (mv/m
2
v)
∨, we can define a twisted residue

morphism that does not depend on π:

∂v : KMW
∗ (E,LE)→ KMW

∗−1 (κ(v), ωv ⊗ Lκ(v))
x⊗ l 7→ ∂πv (x)⊗ (π̄∗ ⊗ l)

where LE and Lκ(v) are the pullbacks of a free rank 1 module L over Ov, π̄ is the canonical
projection of π modulo mv and π̄∗ the dual of π̄ (i.e. its canonical associated linear form).

2.3 Transfers

Recall the definition of transfers on Milnor-Witt K-theory; the definition for Milnor-Witt
K-theory is analogous to the definition for Milnor K-theory of Bass and Tate (see [BT73],
see also [GS17]).

Theorem 2.12 (Homotopy invariance). Let F be a field and F (t) the field of rational
functions with coefficients in F in one variable t. We have a split short exact sequence

0 //KMW
∗ (F ) res//KMW

∗ (F (t)) d //
⊕

x∈(A1
F )

(1) KMW
∗−1 (κ(x), ωx) // 0

where res = resF (t)/F is the restriction map defined in 2.7 and d =
⊕

x∈(A1
F )

(1) ∂x is the
sum of the residue maps defined in 2.11.

Proof. See [Mor12, Theorem 3.24] (actually, Morel does not use twisted sheaves but
chooses a generator for each ωx instead, which is equivalent. Note also that the choice of
a generator for each ωx is the same as a choice of uniformizer for the valuations corre-
sponding to the closed points).
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2.13. Let φ : E → F be a monogenic finite field extension and choose x ∈ F such that
F = E(x). The homotopy exact sequence implies that for any β ∈ KMW

∗ (F, ωF/k) there
exists γ ∈ KMW

∗ (E(t), ωE(t)/k) with the property that d(γ) = β (note that we identify the
element β with a tuple in a direct sum of Milnor-Witt groups which has one entry β and
all other entries 0). Now the valuation at ∞ yields a morphism

∂∞ : KMW
∗+1 (E(t), ωE(t)/k)→ KMW

∗ (E,ωE/k)

which vanishes on the image of resE(t)/E. We denote by Trx/E(β) the element −∂∞(γ); it
does not depend on the choice of γ. This defines a group morphism

Trx/E : KMW
∗ (E(x), ωF/k)→ KMW

∗ (E,ωE/k)

called the transfer map and also denoted by Trx/E. The following result completely
characterizes the transfer maps.

Lemma 2.14 (projection formula). Keeping the previous notations, let α ∈ KMW
∗ (E)

and β ∈ KMW
∗ (E(x)). We then have

Trx/E(resE(x)/E(α) · β) = α · Trx/E(β).

Proof. It suffices to prove the result for α = [u] with u ∈ E×. Let γ ∈ KMW
∗ (E(t), ωE(t)/k)

such that d(γ) = β. It follows from [Mor12, Proposition 3.17] that for any valuation v, we
have ∂v([u]γ) = −〈−1〉[u]∂v(γ). Thus −〈−1〉[u]γ is a lift of [u]β and ∂∞(−〈−1〉[u]γ) =

[u]∂v(γ). Thus Trx/E(resE(x)/E(α) · β) = α · Trx/E(β).

Lemma 2.15. Keeping the previous notations, let

d = (
⊕

x dx)⊕ d∞ : KMW
∗+1 (E(t), ωF (t)/k)→ (

⊕
xK

MW
∗ (E(x), ωE(x)/k))⊕KMW

∗ (E,ωE/k)

be the total twisted residue morphism (where x runs through the set of monic irreducible
polynomials in E(t)). Then, the transfer maps Trx/E are the unique morphisms such that∑

x(Trx/E ◦dx) + d∞ = 0.

Proof. Straightforward (see [Mor12, §4.2]).

Definition 2.16. Let F = E(x1, x2, . . . , xr) be a finite extension of a field E and
consider the chain of subfields

E ⊂ E(x1) ⊂ E(x1, x2) ⊂ · · · ⊂ E(x1, . . . , xr) = F.

Define by induction:

Trx1,...,xr/E = Trxr/E(x1,...,xr−1) ◦ · · · ◦ Trx2/E(x1) ◦Trx1/E
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We give an elementary proof of the fact that the definition does not depend on the
choice of the factorization (see [Mor12, Theorem 4.27] for the original proof):

Theorem 2.17. Let F = E(x1, . . . , xr)/E be a finite field extension. Then the map

Trx1,...,xr/E : KMW
∗ (F )→ KMW

∗ (E)

does not depend on the choice of the generating system (x1, . . . , xr).

3 Proof of the main theorem

3.1 Reduction to the p-primary case

We begin with a series of lemmas aimed at reducing Theorem 2.17 to the case of p-primary
fields.

Lemma 3.1. Let F/E be a finite extension of degree n of characteristic zero fields and
consider the transfer map TrF/E : GW(F )→ GW(E). If n is odd, then

TrF/E(1) = nε.

If n is even, then there exist a1, . . . , an ∈ E× such that

TrF/E(1) =
∑

i〈ai〉.

Proof. See [Lam05, VII.2.2]. Note that the case n even is not really much information, it
is merely the diagonalizability of quadratic forms.

Lemma 3.2. Let E be a field of characteristic p > 0. Let α ∈ GW(E) be an element
in the kernel of the rank morphism GW(E)→ Z. Then α is nilpotent in GW(E).

Proof. The result is not surprising: in Witt rings, torsion elements are nilpotent, and in
characteristic p > 0, then kernel of the rank morphism is torsion.

We give a detailed proof following [LYZ19, Lemma B.4]. As the set of nilpotent
elements in the commutative ring GW(E) is an ideal, we may assume α = 〈t〉 − 1 where
t ∈ E×. We have (1 + α)2 = 〈t2〉 = 1, so that α2 = −2α. By induction, we get
αn = (−2)n−1α for n ≥ 1: we have to show that α is annihilated by a power of two.
If p = 2, 2α = 0 holds (see [Mor12, Lemma 3.9]), i.e. α2 = 0. Now we assume p ≥ 3

so that there is no danger thinking in terms of usual quadratic forms. We first consider
µ := 〈−1〉 − 1 ∈ GW(Fp). The quadratic form −x2 − y2 over Fp represents 1 (see
[Ser77, Proposition 4,§IV.1.7]) so that 〈−1〉 + 〈−1〉 = 〈1〉 + 〈1〉 ∈ GW(Fp), i.e. 2µ =

0 ∈ GW(Fp),which gives µ2 = 0. Let t ∈ E× be any nonzero element in an extension
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E of Fp. The quadratic form q(x, y) := x2 − y2 = (x + y)(x − y) represents t (this
is q((1 + t)/2, (1 − t)/2)), which easily implies that 〈1〉 + 〈−1〉 = 〈t〉 + 〈−t〉 (see also
[Mor12, Lemma 3.7]. This is equivalent to saying (2 + µ)α = 0 ∈ GW(E). It follows that
4α = (2− µ)(2 + µ)α = 0, and then α3 = 0.

Lemma 3.3. Consider two finite extensions F/E and L/E of coprime degrees n and
m, respectively. Let x ∈ KMW

∗ (E) such that resF/E(x) = 0 = resL/E(x). Then x = 0.

Proof. Applying the transfer map to resF/E(x) and resL/E(x), we see that x is killed by
TrF/E(1) and TrL/E(1), thanks to the projection formula (note that the transfers here are
transfers for the Grothendieck-Witt ring, identified with KMW

0 ).
In characteristic 0, up to swapping n and m, we may assume that n is odd, hence

TrF/E(1) = nε and TrL/E(1) =
∑

i〈ai〉 for some a1, . . . , am ∈ E×. Write n = 2r + 1.
There exist a, b ∈ Z such that an + bm = r since n and m are coprime. Recall that the
hyperbolic form h = 1 + 〈−1〉 satisfies 〈ai〉h = h for any i (see [Mor12, Lemma 3.7]).
Hence rh = (anε + b

∑
i〈ai〉)h and 1 = nε − rh = (1− ah) TrF/E(1)− bhTrL/E(1) kills x.

In characteristic p > 0, there exist two nilpotent α and α′ in GW(E) such that
TrF/E(1) = n + α and TrL/E(1) = m + α′, according to Lemma 3.2. Hence for a natural
number s large enough, the element x is killed by the coprime numbers nps and mps so
that x = 0.

Lemma 3.4. Let E be a field. Let F1, . . . , Fn be finite extensions of coprime degrees
d1, . . . , dn. Let δ ∈ KMW

∗ (E) be an element such that resFi/E(δ) = 0 for any i. Then, δ is
zero.

Proof. This follows as in Lemma 3.3.

Lemma 3.5. Let F/E be a field extension and w be a valuation on F which restricts to
a nontrivial valuation v on E with ramification index e. We have a commutative square

KMW
∗ (E)

∂v //

resF/E

��

KMW
∗−1 (κ(v), ωv)

eε·resκ(w)/κ(v)

��

KMW
∗ (F )

∂w
//KMW
∗−1 (κ(w), ωw)

where eε =
∑e

i=1〈−1〉i−1.

Proof. See [Mor12, Lemma 3.19].

Lemma 3.6. Let F/E be a field extension and x ∈ (A1
E)

(1) a closed point. Then the
following diagram
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KMW
∗ (E(x), ωE(x)/k)

Trx/E
//

⊕y resF (y)/E(x)

��

KMW
∗ (E,ωE/k)

resF/E

��⊕
y 7→xK

MW
∗ (F (y), ωF (y)/k) ∑

y ey,ε Try/F

//KMW
∗ (F, ωF/k)

is commutative, where the notation y 7→ x stands for the closed points of A1
F lying above

x, and ey,ε =
∑ey

i=1〈−1〉i−1 is the quadratic form associated to the ramification index of
the valuation vy extending vx to F (t).

Proof. According to Lemma 3.5, the following diagram

KMW
∗ (E(t))

∂x //

resF (t)/E(t)

��

KMW
∗−1 (E(x), ωx)

⊕yey,ε resF (y)/E(x)

��

KMW
∗ (F (t))

⊕y∂y
//
⊕

y 7→xK
MW
∗−1 (F (y), ωy)

is commutative hence for all closed points in P1
F , we have

∂y(resF (t)/E(t) ◦ρx − (⊕yρy) ◦ (⊕yey,ε resF (y)/E(x))) = 0

and so the diagram

KMW
∗ (E(t))

resF (t)/E(t)

��

KMW
∗ (E(x), ωx)

⊕yey,ε resF (y)/E(x)

��

ρx
oo

KMW
∗ (F (t))

⊕
y 7→xK

MW
∗ (F (y), ωy)⊕yρy

oo

is commutative, where ρx is the splitting of Theorem 2.12. Then, we conclude according
to the definition of the Bass-Tate transfer maps 2.13.

Remark 3.7. The multiplicities ey appearing in the previous lemma are equal to

[E(x) : E]i/[F (y) : F ]i

where [E(x) : E]i is the inseparable degree.

Theorem 3.8 (Strong R1c). Let E be a field, F/E a finite field extension and L/E
an arbitrary field extension. Write F = E(x1, . . . , xr) with xi ∈ F , R = F ⊗E L and
ψp : R→ R/p the natural projection defined for any p ∈ Spec(R). Then the diagram

KMW
∗ (F, ωF/k)

Trx1,...,xr/E //

⊕p res(R/p)/F
��

KMW
∗ (E,ωE/k)

resL/E

��⊕
p∈Spec(R) K

MW
∗ (R/p, ω(R/p)/k)∑

p(mp)ε Trψp(a1),...,ψp(ar)/L

//KMW
∗ (L, ωL/k)

is commutative where mp is the length of the localized ring R(p).



Transfers on Milnor-Witt K-theory 13

Proof. We prove the theorem by induction. For r = 1, this is Lemma 3.6. Write E(x1)⊗E
L =

∏
j Rj for some Artin local L-algebras Rj, and decompose the finite dimensional L-

algebra F ⊗E(x1) Rj as F ⊗E(x1) Rj =
∏

iRij for some local L-algebras Rij. We have
F ⊗E L '

∏
i,j Rij. Denote by Lj (resp. Lij) the residue fields of the Artin local L-

algebras Rj (resp. Rij), and mj (resp. mij) for their geometric multiplicity. We can
conclude as the following diagram commutes

KMW
∗ (F, ωF/k)

Trx1,...,xr/E //

⊕ij resLij/F
��

KMW
∗ (E(x1), ωE(x1)/k)

⊕ resLj/E(x1)

��

Trx1/E //KMW
∗ (E,ωE/k)

resL/E

��⊕
ij K

MW
∗ (Lij, ωLij/k)∑

ij(mijm
−1
j )ε Trψij(x1),...,ψij(xr)/Lj

//
⊕

j K
MW
∗ (Lj, ωLj/k) ∑

j(mj)ε Trψj(x1)/L

//KMW
∗ (L, ωL/k)

since both squares are commutative by the inductive hypothesis, the case r = 1, and the
multiplicity formula (mn)ε = mεnε for any natural numbers m,n.

Theorem 3.9. Assume that Theorem 2.17 holds for all p-primary fields E for any
prime number p. Then the theorem holds for any field E.

Proof. Consider two decompositions

E ⊂ E(x1) ⊂ E(x1, x2) ⊂ · · · ⊂ E(x1, . . . , xr) = F.

and

E ⊂ E(y1) ⊂ E(y1, y2) ⊂ · · · ⊂ E(y1, . . . , ys) = F.

of F . Let α ∈ KMW
∗ (F ) and denote by δ the element Trx1,...,xr/E(α) − Try1,...ys/E(α).

Fix p a prime number and let L be a maximal prime to p extension of E (L has no
nontrivial finite extension of degree prime to p). With the notation of Theorem 3.8,
the map

∑
p(mp)ε Trψp(x1),...,ψp(xr)/L does not depend on the choice of xi according to the

assumption. Hence resL/E(δ) = 0 and we can find a finite extension Lp/E of degree prime
to p such that resLp/E(δ) = 0. Since this is true for all prime number p, we see that the
assumption of Lemma 3.4 are satisfied. Thus δ = 0 and the theorem is proved.

3.2 Proof in the p-primary case

Proposition 3.10 (Bass-Tate-Morel Lemma). Let F (x) be a monogenic extension of
F . Then KMW

∗ (F (x)) is generated as a left KMW
∗ (F )-module by elements of the form

ηm · [p1(x), p2(x), . . . , pn(x)]

where the pi are monic irreducible polynomials of F [t] satisfying
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deg(p1) < deg(p2) < · · · < deg(pn) ≤ d− 1

where d is the degree of the extension F (x)/F .

Proof. Straightforward computations (see also [Mor12, Theorem 3.24 and Lemma 3.25.1]).

Corollary 3.11. Let F/E be a finite field extension and assume one of the following
conditions holds:

• F/E is a quadratic extension,

• F/E is a prime degree p extension and E has no nontrivial extension of degree prime
to p.

Then KMW
∗ (F ) is generated as a left KMW

∗ (E)-module by F×.

Proof. In both cases, the extension F/E is simple and the only monic irreducible poly-
nomial in E[t] of degree strictly smaller than [F : E] are the polynomials of degree 1. We
conclude by Proposition 3.10.

In the following, we fix a prime number p and E a p-primary field.

Proposition 3.12. Let F = E(x) be a monogenic extension of E of degree p. Then
the transfers Trx/E : KMW

∗ (E(x), ωE(x)/k) → KMW
∗ (E,ωE/k) do not depend on the choice

of x.

Proof. According to Lemma 3.11, the group KMW
∗ (F, ωF/k) is generated by products of

the form resF/E(α) · [β] with α ∈ KMW
∗ (E,ωE/k) and β ∈ F×. According to 2.14, we have

the projection formula

Trx/E(resF/E(α) · [β]) = α · TrF/E([β]).

It remains to prove that the right-hand side TrF/E([β]) ∈ KMW
1 (E) does not depend on a

choice of x. For that, we consider the Cartesian square

KMW
1 (E) //

��

I(E)

��

KM
1 (E) // I(E)/I2(E)

where KM
1 (E) = E× and I(E) is the fundamental ideal (we refer to the proof of [Fas20,

Theorem 1.4] with the following remarks: ibid. assume the characteristic to be different
from 2 but this is not necessary according to [Mor12, Remark 3.12]; the proof of ibid.
uses Voevodsky’s affirmation of Milnor conjecture but this is not needed in our case since
we only work in degree n = 1).



Transfers on Milnor-Witt K-theory 15

By naturality of the previous square, we are reduced to proving the independence of
the transfer map for the two cases KM

1 (E) = E× and I(E) which we assume to have
elementary proofs somewhere in the literature (recall that a non-elementary proof of
Proposition 3.12 can also be found in [Mor12, Chapter 5]). Indeed, for KM

1 (E) = E×, the
transfer map is nothing but the Galois norm; for I(E), we only have to consider the two
cases where E(x)/E is a purely inseparable extension or a separable extension, which are
true in characteristic 6= 2 according to [Fas08, Lemma 6.4.6] and [Fas20, Example 1.23]
(in characteristic 2, we believe the work of Fasel on Witt transfers could be extended
but, for the present article, we simply refer to the book of Morel, e.g. [Mor12, Proof of
Corollary 5.2 in the case r = 1]).

Remark 3.13. We may now use the notation TrF/E : KMW
∗ (F, ωF/k)→ KMW

∗ (E,ωE/k)

if F/E is a field extension of prime degree p.

Proposition 3.14. Let F be a field complete with respect to a discrete valuation v,
and F ′/F a normal extension of degree p. Denote by v′ the unique extension of v to F ′.
Then the diagram

KMW
∗ (F ′, ωF ′/k)

∂v′ //

TrF ′/F
��

KMW
∗−1 (κ(v′), ωκ(v′))

Trκ(v′)/κ(v)
��

KMW
∗ (F )

∂v
//KMW
∗−1 (κ(v))

is commutative.

Proof. This is a particular case of [Mor12, Remark 5.20] (the completeness assumption
is not needed). We note that the proof of [Mor12, Remark 5.20] does not depend on
[Mor12, Lemma 5.5] (thus there is no loophole in the proof of Theorem 2.17). Moreover,
even though the proof of [Mor12, Remark 5.20] is only three pages long, we hope that the
completeness assumption could lead to a shorter proof.

Corollary 3.15. Let F/E be a normal extension of degree p and let x ∈ (A1
E)(1).

Then the diagram

KMW
∗ (F (t), ωF (t)/k)

⊕∂y
//

TrF (t)/E(t)

��

⊕
y 7→xK

MW
∗−1 (κ(y), ωκ(y)/k)∑

Trκ(y)/κ(x)
��

KMW
∗ (E(t), ωE(t)/k) ∂x

//KMW
∗−1 (κ(x), ωκ(x)/k)

is commutative, where y → x denotes the set of elements y ∈ (A1
F )(1) mapping to x through

the canonical morphism.
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Proof. Denote by Êx (resp. F̂y) the completions of E(t) (resp. F (t)) with respect to the
valuations defined by x (resp. y). Consider the following diagram

KMW
∗ (F (t), ωF (t)/k)

TrF (t)/E(t)

��

//
⊕

y→xK
MW
∗ (F̂y, ωF̂y/k)

⊕∂y
//

∑
TrF̂y/F̂x

��

⊕
y→xK

MW
∗−1 (κ(y), ωκ(y)/k)∑

Trκ(y)/κ(x)

��

KMW
∗ (E(t), ωE(t)/k) //KMW

∗ (Êx, ωÊx/k)
∂x //KMW

∗−1 (κ(x), ωκ(x)/k).

The left-hand square is commutative according to Theorem 3.8. The right-hand square
commutes according to Proposition 3.14. Hence the corollary.

Lemma 3.16. Let L/E be a normal extension of degree p, and let E(a)/E be a mono-
genic finite extension. Assume that L and E(a) are both subfields of some algebraic
extension of E, and denote by L(a) their composite. Then the following diagram

KMW
∗ (L(a), ωL(a)/k)

TrL(a)/E(a)

��

Tra/L
//KMW
∗ (L, ωL/k)

TrL/E
��

KMW
∗ (E(a), ωE(a)/k) Tra/E

//KMW
∗ (E,ωE/k)

is commutative.

Proof. First of all, we note that the vertical maps are independent of choices by Lemma
3.12 (note that if L = E(a), then TrL(a)/E(a) = Id does not depend on any choices). Let
x (resp y0) be the closed point of A1

E (resp. A1
L) defined by the minimal polynomial of a

over E (resp. L). Given α ∈ KMW
∗ (L(a), ωL(a)/k), we have Tra/L(α) = −∂∞(β) for some

β ∈ KMW
∗+1 (L(t), ωL(t)/k) satisfying ∂y0(β) = α and ∂y(β) = 0 for y 6= y0. By Corollary 3.15

∂x(TrL(t)/E(t)(β)) =
∑

y 7→x Trκ(y)/κ(x)(∂y(β)) = Trκ(y0)/κ(x)(α),

and, similarly, ∂x′(TrL(t)/E(t)(β)) = 0 for x 6= x′. Hence by definition of the transfer map
Tra/E we have

Tra/E(TrL(a)/E(a)(α)) = −∂∞(TrL(t)/E(t)(β)).

Moreover, since the only point of P1
L above∞ is∞, another application of Corollary 3.15

gives

∂∞(TrL(t)/E(t)(β)) = TrL/E(∂∞(β)).

Hence the result.

Tra/E(TrL(a)/E(a)(α)) = −TrL/E(∂∞(β)) = TrL/E(Tra/L(α)).
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Proof of Theorem 2.17. We keep the previous notations. We already know that it suffices
to treat the case when E has no nontrivial extension of degree prime to p (according to
Theorem 3.9). Let pm be the degree of the extension F/E. We prove the result by induc-
tion on m. The case m = 1 follows from Proposition 3.12. Consider two decompositions

E ⊂ E(x1) ⊂ E(x1, x2) ⊂ · · · ⊂ E(x1, . . . , xr) = F.

and

E ⊂ E(y1) ⊂ E(y1, y2) ⊂ · · · ⊂ E(y1, . . . , ys) = F.

of F . By Lemma 2.5, the extension E(x1)/E contains a normal subfield E(x′1) of de-
gree p over E. Applying Lemma 3.16 with a = x1 and L = E(x′1) yields Trx1/E =

Trx′1/E ◦Trx1/E(x′1)
. Hence, without loss of generality, we may assume that x1 = x′1 and,

similarly, [E(y1) : E] = p. Write F0 for the composite of the fields E(x1) and E(y1) in F
and write F = F0(z1, . . . , zt) with zi ∈ F . The fields E(x1) and E(y1) have no nontrivial
prime to p extension, thus we may conclude by the induction hypothesis that the triangles

KMW
∗ (F, ωF/k)

Trx2,...,xr/E(x1) //

Trz1,...,zt/F0
��

KMW
∗ (E(x1), ωE(x1)/k)

KMW
∗ (F0, ωF0/k)

TrF0/E(x1)

33

and

KMW
∗ (F, ωF/k)

Try2,...,ys/E(y1) //

Trz1,...,zt/F0
��

KMW
∗ (E(y1), ωE(y1)/k)

KMW
∗ (F0, ωF0/k)

TrF0/E(y1)

33

are commutative.
Moreover, Lemma 3.16 for a = x1 and L = E(y1) implies that the following diagram

KMW
∗ (F0, ωF0/k)

TrF0/E(x1)//

TrF0/E(y1)

��

KMW
∗ (E(x1), ωE(x1)/k)

Trx1/E
��

KMW
∗ (E(y1), ωE(y1)/k) Try1/E

//KMW
∗ (E,ωE/k)

is commutative. Putting everything together, we conclude that Trx1,...,xr/E = Try1,...,ys/E.



Transfers on Milnor-Witt K-theory 18

3.3 Applications in motivic homotopy theory

We end this section with a discussion of a conjecture of Morel in motivic homotopy
theory. Milnor-Witt K-theory is a fundamental object in motivic homotopy theory since it
computes the homotopy groups of spheres (in the sense of [Mor12, Chapter 6]). Moreover,
Milnor-Witt K-theory is a particular case of the notion of homotopy sheaf as defined below.

3.17. Consider M ∈ HI(k) a homotopy sheaf, i.e. a Nisnevich sheaf over the category of
smooth k-schemes Smk with value in the category of abelian groups and satisfying the
following property (strong A1-invariance): for any smooth scheme X, the map

H i(X,M)→ H i(A1
X ,M)

of Nisnevich sheaf cohomology groups induced by the canonical projection A1
X → X is a

bijection for i ∈ {0, 1}.
For instance, the Milnor-Witt K-theory KMW

n in degree n defines a homotopy sheaf
(for any fixed integer n).

Recall that the contraction of M is the sheaf defined by

X 7→ ker(M(Gm ×X)→M(X))

and is denoted by M−1; this is again a homotopy sheaf. Moreover, M−1 has a structure
of GW-module and, for any valued field (F, v), we have a (twisted) residue map

M(F )→M(κ(v), ωv) := M(κ(v))⊗Z[κ(v)×] Z[ω×v ].

3.18. Let M be a homotopy sheaf and M−1 its contraction. We recall the construction
of the Bass-Tate transfer maps

Trψ = TrF/E : M−1(F, ωF/k)→M−1(E,ωE/k)

defined for any finite map ψ : E → F of fields.

Theorem 3.19. Let M ∈ HI(k) be a homotopy sheaf. Let F be a field and F (t) the
field of rational functions with coefficients in F in one variable t. We have a split short
exact sequence

0 //M(F ) res//M(F (t)) d //
⊕

x∈(A1
F )

(1) M−1(κ(x), ωx) // 0

where d =
⊕

x∈(A1
F )

(1) ∂x is the usual differential (see [Mor12, Chapter 4]).

Proof. See [Mor12, §4.2, page 97] and [Mor12, Theorem 5.38].

Definition 3.20 (Coresidue maps). Keeping the previous notations, the fact that the
homotopy sequence is split allows us to define coresidue maps
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ρx : M−1(κ(x), ωx)→M(F (t))

for any closed points x ∈ (A1
F )

(1), satisfying ∂x ◦ ρx = Idκ(x) and ∂y ◦ ρx = 0 for x 6= y

where y ∈ (A1
F )

(1).

Definition 3.21 (Bass-Tate transfers). Let M ∈ HI(k) be a homotopy sheaf. Let F
be a field and F (t) the field of rational functions with coefficients in F in one variable t.
For x ∈ (A1

F )
(1), we define the Bass-Tate transfer

Trx/F : M−1(F (x), ωF (x)/k)→M−1(F, ωF/k)

by the formula Trx/F = −∂∞ ◦ ρx.

Remark 3.22. There is also an equivalent definition of the Bass-Tate transfers that
does not use the coresidue maps (see [Mor12, §4.2]).

Definition 3.23. Let F = E(x1, x2, . . . , xr) be a finite extension of a field E and
consider the chain of subfields

E ⊂ E(x1) ⊂ E(x1, x2) ⊂ · · · ⊂ E(x1, . . . , xr) = F.

Define by induction:

Trx1,...,xr/E = Trxr/E(x1,...,xr−1) ◦ · · · ◦ Trx2/E(x1) ◦Trx1/E

Conjecture 3.24 (Morel conjecture). Let F = E(x1, . . . , xr)/E be a finite field extension.
Then the map

Trx1,...,xr/E : M−1(F, ωF/k)→M−1(E,ωE/k)

does not depend on the choice of the generating system (x1, . . . , xr).

Remark 3.25. 1. This was claimed by Morel in [Mor12, Remark 4.31] and [Mor11,
Remark 5.10] (see also [Bac20, Remark 4.3] for a similar conjecture).

2. Morel proved in [Mor12, Chapter 4] that the conjecture is true if the contracted
homotopy sheaf M−1 is replaced by M−2. The proof of Morel uses in a fundamental
way the cohomology group H2((P1)2,M−2) and cannot be easily applied to prove
the conjecture in full generality.

3. In [Fel20b, Theorem 6.1.6], the author proved that, if M is a homotopy sheaf, then
Conjecture 3.24 is true if and only if M has a structure of Milnor-Witt transfers
(or, equivalently, a structure of framed transfers).

4. We also know that the conjecture is true in full generality if we work with rational
homotopy sheaves MQ,−1 (see [Fel20b, Theorem 4.1.19]).
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Following the ideas of the previous section, we can reduce the conjecture to the case
of p-primary fields.

Theorem 3.26. In order to prove Conjecture 3.24 (i.e. a contracted homotopy sheaf
M−1 has functorial transfers), it suffices to consider the case of p-primary fields (where p
is a prime number).

Proof. We can use verbatim the proof of Theorem 3.9 where Theorem 3.8 is replaced by
[Fel20b, Theorem 4.1.16] and Lemma 3.4 still applies thanks to more general projection
formulas [Fel20b, Theorem 4.1.15].

We still have hope to prove the conjecture in full generality with the help of the
previous theorem.
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