TRANSFERS ON MILNOR-WITT K-THEORY

Niels Feld *

Abstract

We study the existence of transfers on a generalization of Milnor K-theory called Milnor-Witt K-theory. We give a new proof of the fact that Milnor-Witt K-theory has geometric transfers. Moreover, we explain how our proof yields a simplification of Morel's conjecture about Bass-Tate-Kato transfers on contracted homotopy sheaves in the context of motivic homotopy theory.

Contents

1	Introduction		
	1.1	Current work	2
	1.2	Outline of the paper	3
	1.3	Acknowledgements	3
2	Definitions		
	2.1	On p -primary fields	4
	2.2	Milnor-Witt K-theory	6
	2.3	Transfers	8
3	Proof of the main theorem		
	3.1	Reduction to the p -primary case	10
	3.2	Proof in the p -primary case \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	13
	3.3	Applications in motivic homotopy theory	18

2010 Mathematics Subject Classification. Primary 14C17; Secondary 14C35, 11E81.

Key words and phrases. Milnor-Witt K-theory, Bass-Tate-Kato Transfers, Motivic homotopy theory. *This work received support from the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-IS-IDEX-OOOB).

1 Introduction

1.1 Current work

In the beginning of the century, Morel (in joint work with Hopkins) defined for a field E the Milnor-Witt K-theory $\mathbf{K}^{\text{MW}}_{*}(E)$ (see [Mor12, Definition 3.1]). This Z-graded abelian group behaves in positive degrees like Milnor K-theory groups $\mathbf{K}^{M}_{n}(E)$ (or rather its fibre product with powers of the fundamental ideal), and in non-positive degrees like Grothendieck-Witt and Witt groups of quadratic forms, $\mathrm{GW}(E)$ and $\mathrm{W}(E)$. The Milnor-Witt K-theory was originally used for solving some splitting problems for projective modules (see e.g. the work of Barge and Morel [BM00]). Since then, Milnor-Witt K-groups have proven to be relevant for motivic homotopy and its applications in algebraic geometry.

The word "transfer" has many incarnations in mathematics. Philosophically, a transfer is a way to pass on information from one world to another. In K-theory and algebraic geometry, transfers are maps related to pushforwards or maps that go in the wrong way. For instance, in [BT73], Bass and Tate defined a map

$$\operatorname{Tr}_{x/F} : \mathbf{K}^{\mathrm{M}}_{*}(F(x)) \to \mathbf{K}^{\mathrm{M}}_{*}(F)$$

for any monogenic extension of fields F(x)/F. Unfortunately, the natural definition given by Bass and Tate had one issue: the map $\text{Tr}_{x/F}$ may depend on the choice of generator x. This raises the question of functoriality of such transfer maps. In 1973, Bass and Tate conjectured that such transfers are well-defined but a proof appeared only a decade later in the work of Kato [Kat80].

The study of transfers has a long history in motivic homotopy theory (see [FSV00, Dé12, Fas08, GP18, BCD⁺20, Fel21]). In [Mor12, Chapter 4], Morel introduced transfers on the Milnor-Witt K-theory of a field. Following ideas of Bass and Tate [BT73], one can define geometric transfer maps

$$\operatorname{Tr}_{x_1,\ldots,x_r/E} = \operatorname{Tr}_{x_r/E(x_1,\ldots,x_{r-1})} \circ \cdots \circ \operatorname{Tr}_{x_1/E} : \mathbf{K}^{\mathrm{MW}}_*(E(x_1,\ldots,x_r),\omega_{E(x_1,\ldots,x_r)/E}) \to \mathbf{K}^{\mathrm{MW}}_*(E)$$

on \mathbf{K}^{MW}_* for finite extensions $E(x_1, \ldots, x_r)/E$ (see the next section for more details). Morel proved in [Mor12, Chapter 4] that such transfers are well-defined and functorial. The relevance of $\omega_{E(x_1,\ldots,x_r)/E}$ for making the transfers independent of choices of generating elements is hinted by the fact that the naive definition of the residue map ∂_v^{π} of a discrete valuation depends on the choice of prime π (see [Mor12, Remark 3.20]).

In this article, we give a new (shorter) proof of this result:

Theorem 1 (Theorem 2.17). Let $E(x_1, \ldots, x_r)/E$ be a finite extension of fields. The transfer map

 $\operatorname{Tr}_{x_1,\ldots,x_r/E}: \mathbf{K}^{MW}_*(E(x_1,\ldots,x_r),\omega_{E(x_1,\ldots,x_r)/E}) \to \mathbf{K}^{MW}_*(E)$

does not depend on the choice of the generating system (x_1, \ldots, x_r) .

The idea is to reduce to the case of p-primary fields (see Definition 2.3) then study the transfers manually, as Kato originally did for Milnor K-theory (see [GS17] for an elementary exposition).

Moreover, this proof applies to the study of a conjecture of Morel about the existence of transfer maps for (contracted) homotopy sheaves:

Theorem 2 (Theorem 3.26). In order to prove that a contracted homotopy sheaf M_{-1} has functorial transfers, it suffices to consider the case of p-primary fields (where p is a prime number).

1.2 Outline of the paper

In Subsection 2.1, we recall some properties of fields called *p*-primary fields. For *p* a prime number, a *p*-primary field has no nontrivial finite extension prime to *p* (see Definition 2.3). In Subsection 2.2 and Subsection 2.3, we give the basic definitions of Milnor-Witt K-theory In Subsection 3.1 and Subsection 3.2, we prove that Milnor-Witt K-theory has transfer maps which are functorial. The proof is similar to the original proof of Kato for Milnor K-theory: we reduce to the case of *p*-primary fields then study the transfers manually. In Subsection 3.3, we end with a discussion of a conjecture of Morel in motivic homotopy theory by applying ideas from Subsection 3.1.

1.3 Acknowledgements

I deeply thank my two PhD advisors Frédéric Déglise and Jean Fasel, and my two PhD referees Marc Levine and Paul Arne Østvær. Moreover, I am extremely grateful to the anonymous referee for taking the time to review this paper.

2 Definitions

Notation

Throughout the paper, we fix a (commutative) field k and we assume moreover that k is perfect (of arbitrary characteristic).

By a field E over k, we mean a finitely generated extension of fields E/k.

Let *E* be a field (over *k*) and *v* a valuation on *E*. We will always assume that *v* is discrete. We denote by \mathcal{O}_v its valuation ring, by \mathfrak{m}_v its maximal ideal and by $\kappa(v)$ its

residue class field. We consider only valuations of geometric type, that is we assume: $k \subset \mathcal{O}_v$, the residue field $\kappa(v)$ is finitely generated over k and satisfies tr. $\deg_k(\kappa(v)) + 1 =$ tr. $\deg_k(E)$.

Let $f : X \to Y$ be a morphism of schemes. Denote by \mathcal{L}_f (or $\mathcal{L}_{X/Y}$) the virtual vector bundle over Y associated with the cotangent complex of f, and by ω_f (or $\omega_{X/Y}$) its determinant. Recall that if $p : X \to Y$ is a smooth morphism, then \mathcal{L}_p is (isomorphic to) $\mathcal{T}_p = \Omega_{X/Y}$ the space of relative (Kähler) differentials. If $i : Z \to X$ is a regular closed immersion, then \mathcal{L}_i is the normal cone $-\mathcal{N}_Z X$. If f is the composite $Y \xrightarrow{i} \mathbb{P}_X^n \xrightarrow{p} X$ with p and i as previously (in other words, if f is lci quasi-projective), then \mathcal{L}_f is isomorphic to the virtual tangent bundle $i^* \mathcal{T}_{\mathbb{P}_X^n/X}^n - \mathcal{N}_Y(\mathbb{P}_X^n)$. In practice, we mostly work with smooth schemes hence every map (between smooth schemes) is lci quasi-projective.

Let X be a scheme and $x \in X$ a point. Specializing the previous notations, we denote by $\mathcal{L}_x = \mathcal{L}_{\text{Spec}(\kappa(x))/X} = (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$ and ω_x its determinant. Similarly, let v a discrete valuation on a field, we denote by ω_v the line bundle $(\mathfrak{m}_v/\mathfrak{m}_v^2)^{\vee}$.

Let E be a field. We denote by GW(E) the Grothendieck-Witt ring of symmetric bilinear forms on E (another equivalent definition of GW(E) is given in [Mor12, Lemma 3.9]. This is well-defined in characteristic 2 according to the work of Morel). For any $a \in E^*$, we denote by $\langle a \rangle$ the class of the symmetric bilinear form on E defined by $(X, Y) \mapsto aXY$ and, for any natural number n, we put $n_{\epsilon} = \sum_{i=1}^{n} \langle -1 \rangle^{i-1}$. Recall that if n and m are two natural numbers, then $(nm)_{\epsilon} = n_{\epsilon}m_{\epsilon}$.

2.1 On *p*-primary fields

We recall some facts about fields (see [Sha82, §1] and [BT73, Section 5]). Let E be a field and p a prime number. Fix a separable closure E_s of E and consider the set of all subextensions of E_s that contain E and that can be realized as a union of finite prime-to-pextensions of E. Zorn's lemma implies that this set contains a maximal element $E_{\langle p \rangle}$ for the inclusion.

PROPOSITION 2.1. If F is a finite extension of E contained in $E_{\langle p \rangle}$, then its degree [F:E] is prime to p.

Proof. Write $F = E(x_1, \ldots, x_r)$ with $x_i \in F$. Each x_i is contained in a prime-to-p extension of E hence has a degree prime to p.

PROPOSITION 2.2. If F is a finite extension of $E_{\langle p \rangle}$, then its degree $[F : E_{\langle p \rangle}]$ is equal to p^n for some natural number n.

Proof. Let x be any element in F and denote by P_x its irreducible polynomial over $E_{\langle p \rangle}$. We prove that its degree is a power of p. All the coefficients lie in a finite prime-to-p extension of E. Without loss of generality, we may assume that $E_{\langle p \rangle}(x)$ is nontrivial. If the degree of x over $E_{\langle p \rangle}$ is prime to p, then $E_{\langle p \rangle}(x)$, which is a nontrivial extension of $E_{\langle p \rangle}$, contradicts the maximality of $E_{\langle p \rangle}$. Write $p^n m$ the degree of x over $E_{\langle p \rangle}$ with $n, m \geq 1$ and (m, p) = 1. Let F_N be the normal closure of F in E_s ; it is a Galois extension of $E_{\langle p \rangle}$ whose degree over $E_{\langle p \rangle}$ is divisible by $p^n m$. If $m \neq 1$, then a Sylow p-subgroup S(p)of $\operatorname{Gal}(F_N/E_{\langle p \rangle})$ is a nontrivial proper subgroup and the fixed field $F_N^{S(p)}$ is a nontrivial prime-to-p extension of $E_{\langle p \rangle}$, which is absurd. Thus m = 1 and the result follows.

The previous result leads to the following definition.

DEFINITION 2.3. A field that has no nontrivial finite extensions of degree prime to a prime number p is called p-primary.

PROPOSITION 2.4. Let F be a nontrivial finite extension of $E_{\langle p \rangle}$ contained in E_s and let p^n be the degree $[F : E_{\langle p \rangle}]$. Then there is a tower of fields

$$E_{\langle p \rangle} = F_1 \subset F_2 \subset \cdots \subset F_n = F$$

such that $[F_i : F_{i-1}] = p$.

Proof. We prove the result by induction on n. We need to find a subfield K of F whose degree over $E_{\langle p \rangle}$ is p^{n-1} . The group $G = \operatorname{Gal}(E_s/E_{\langle p \rangle})$ is a pro-p-group since all finite extensions of $E_{\langle p \rangle}$ contained in E_s are p-power extensions. Galois theory implies that F is the fixed subfield of a subgroup H of G with $[G:H] = p^n$. We will find a subgroup H_1 , such that $H \subset H_1 \subset G$ and $[G:H_1] = p^{n-1}$. Letting $K = E_s^{H_1}$, we will get the desired subfield K.

The group H is subgroup of G of finite index hence is open. By the class equation, it also follows that H has only a finite number of conjugates in G. Let $H' = \bigcap_{x \in G} x^{-1} H x$, then H' is an open normal subgroup of G containing H. The group G/H' is a finite p-group containing H/H'. By the Sylow theorems, we can find H_1 , normal in G, with $H \subset H_1 \subset G$ and $[G:H_1] = p^{n-1}$. This ends to proof. \Box

Similarly, we obtain the following result.

LEMMA 2.5. Let p be a prime number and E a p-primary field. Let F/E be a finite extension (not necessarily separable).

- 1. The field F inherits the property of having no nontrivial finite extension of degree prime to p.
- 2. If $F \neq E$, then there exists a subfield $E \subset F' \subset F$ such that F'/E is a normal extension of degree p.

Proof. (See also [GS17, Lemma 7.3.7])

1. Let L/F be a finite extension of degree prime to p.

If L/F is separable, take the Galois closure \tilde{L} . Since E is a p-primary field, the fixed field of a p-Sylow subgroup in $\operatorname{Gal}(\tilde{L}/E)$ must equal E, hence L = F.

If F/E is purely inseparable, then L/F must be separable, thus L/E has a subfield $L_0 = E$ separable unless L = F.

If F/E is separable but L/F is not, then we may assume that L/F is purely inseparable. Taking a normal closure \tilde{L} , the fixed field of $\operatorname{Aut}_{E}(\tilde{L})$ defines a nontrivial prime to p extension of E unless L = F.

2. The second statement is straightforward in the case when the extension F/E is purely inseparable (see [Sta21, Section 9.14, tag 09HD]), so by replacing F with the maximal separable subextension of F/E, we may assume that F/E is a separable extension. Denote by \tilde{F} the Galois closure of F. The first statement implies that the Galois group $G := \text{Gal}(\tilde{F}/E)$ is a p-group. Let H be a maximal subgroup of G containing $\text{Gal}(\tilde{F}/F)$. By the theory of finite p-groups (see [Suz82, Corollary of Theorem 1.6]), it is a normal subgroup of index p in G, so we may take F' to be its fixed field.

2.2 Milnor-Witt K-theory

We describe the Milnor-Witt K-theory, as defined by Morel (see [Mor12, §3] or [Fas20, §1.1] or [Fel20a, §1]).

DEFINITION 2.6. Let E be a field. The Milnor-Witt K-theory algebra of E is defined to be the quotient of the free \mathbb{Z} -graded algebra generated by the symbols [a] of degree 1 for any $a \in E^{\times}$ and a symbol η in degree -1 by the following relations:

- [a][1-a] = 0 for any $a \in E^{\times} \setminus \{1\}$.
- $[ab] = [a] + [b] + \eta[a][b]$ for any $a, b \in E^{\times}$.
- $\boldsymbol{\eta}[a] = [a]\boldsymbol{\eta}$ for any $a \in E^{\times}$.
- $\eta(\eta[-1]+2) = 0.$

The relations being homogeneous, the resulting algebra is \mathbb{Z} -graded. We denote it by $\mathbf{K}^{\text{MW}}_{*}(E)$.

REMARK 2.7. • By definition of the Milnor K-theory of a field $\mathbf{K}_n^{\mathrm{M}}(E)$, we have a natural isomorphism

$$\mathbf{K}_n^{\mathrm{MW}}(E)/\boldsymbol{\eta} \simeq \mathbf{K}_n^{\mathrm{M}}(E)$$

given by $[a] \mapsto [a], \eta \mapsto 0$ (for any natural number $n \ge 0$).

• If $\phi: E \to F$ is a field extension, then we have a map

$$\operatorname{res}_{F/E} : \mathbf{K}^{\mathrm{MW}}_{*}(E) \to \mathbf{K}^{\mathrm{MW}}_{*}(F)$$

given by $[a] \mapsto [\phi(a)], \eta \mapsto \eta$, and called the restriction map.

2.8. NOTATION We will use the following notations.

- $[a_1,\ldots,a_n] = [a_1]\ldots[a_n]$ for any $a_1,\ldots,a_n \in E^{\times}$.
- $\langle a \rangle = 1 + \eta[a]$ for any $a \in E^{\times}$.

•
$$\epsilon = -\langle -1 \rangle.$$

•
$$n_{\epsilon} = \sum_{i=1}^{n} \langle (-1)^{i-1} \rangle$$
 for any $n \ge 0$, and $n_{\epsilon} = \epsilon(-n)_{\epsilon}$ if $n < 0$.

EXAMPLE 2.9. If $a \in E^{\times}$, we also denote by $\langle a \rangle$ the class of the bilinear form $(X, Y) \mapsto aXY$ in GW(*E*), the Grothendieck-Witt group of *E* [Lam05, Chapter 1]. According to [Mor12, Lemma 3.10], the map $\langle a \rangle \mapsto 1 + \eta[a]$ defines a canonical isomorphism

$$\mathrm{GW}(E) \simeq \mathbf{K}_0^{\mathrm{MW}}(E)$$

and the multiplication by η induces an isomorphism

$$W(E) \simeq \mathbf{K}_n^{\mathrm{MW}}(E)$$

for any n < 0 (where W(E) is the Witt group of E, see [Lam05, Chapter 1]).

2.10. TWISTED MILNOR-WITT K-THEORY Let E be a field and \mathcal{L}_E a 1-dimensional vector space over E. The group E^{\times} of invertible elements of E acts naturally on \mathcal{L}_E^{\times} , the set of non-zero elements in \mathcal{L}_E ; hence the free abelian group $\mathbb{Z}[\mathcal{L}_E^{\times}]$ is a $\mathbb{Z}[E^{\times}]$ -module. Define

$$\mathbf{K}_{n}^{\mathrm{MW}}(E, \mathcal{L}_{E}) = \mathbf{K}_{n}^{\mathrm{MW}}(E) \otimes_{\mathbb{Z}[E^{\times}]} \mathbb{Z}[\mathcal{L}_{E}^{\times}].$$

Let \mathcal{L}_E and \mathcal{L}'_E be two line bundles over E, and n, n' two integers. The product of the Milnor-Witt K-theory groups induces a product

$$\mathbf{K}_{n}^{\mathrm{MW}}(E, \mathcal{L}_{E}) \otimes \mathbf{K}_{n'}^{\mathrm{MW}}(E, \mathcal{L'}_{E}) \to \mathbf{K}_{n+n'}^{\mathrm{MW}}(E, \mathcal{L}_{E} \otimes \mathcal{L'}_{E})$$
$$(x \otimes l, x' \otimes l') \mapsto (xx') \otimes (l \otimes l').$$

2.11. RESIDUE MORPHISMS (see [Mor12, Theorem 3.15]) Let E be a field endowed with a discrete valuation v. We choose a uniformizing parameter π . As in the classical Milnor K-theory, we can define a residue morphism

$$\partial_v^{\pi} : \mathbf{K}^{\mathrm{MW}}_*(E) \to \mathbf{K}^{\mathrm{MW}}_{*-1}(\kappa(v))$$

commuting with the multiplication by η and satisfying the following two properties:

- $\partial_v^{\pi}([\pi, a_1, \dots, a_n]) = [\overline{a_1}, \dots, \overline{a_n}]$ for any $a_1, \dots, a_n \in \mathcal{O}_v^{\times}$.
- $\partial_v^{\pi}([a_1,\ldots,a_n]) = 0$ for any $a_1,\ldots,a_n \in \mathcal{O}_v^{\times}$.

The main difference between Milnor and Milnor-Witt K-theory is that this morphism does depend on the choice of π . Indeed, if we consider another uniformizer π' and write $\pi' = u\pi$ where u is a unit, then we have $\partial_v^{\pi}(x) = \langle u \rangle \partial_v^{\pi'}(x)$ for any $x \in \mathbf{K}^{\text{MW}}_*(E)$. Nevertheless, by twisting by the dual of the normal cone $\omega_v = (\mathfrak{m}_v/\mathfrak{m}_v^2)^{\vee}$, we can define a twisted residue morphism that does not depend on π :

$$\partial_{v}: \mathbf{K}^{\mathrm{MW}}_{*}(E, \mathcal{L}_{E}) \to \mathbf{K}^{\mathrm{MW}}_{*-1}(\kappa(v), \omega_{v} \otimes \mathcal{L}_{\kappa(v)})$$
$$x \otimes l \mapsto \partial_{v}^{\pi}(x) \otimes (\bar{\pi}^{*} \otimes l)$$

where \mathcal{L}_E and $\mathcal{L}_{\kappa(v)}$ are the pullbacks of a free rank 1 module \mathcal{L} over \mathcal{O}_v , $\bar{\pi}$ is the canonical projection of π modulo \mathfrak{m}_v and $\bar{\pi}^*$ the dual of $\bar{\pi}$ (i.e. its canonical associated linear form).

2.3 Transfers

Recall the definition of transfers on Milnor-Witt K-theory; the definition for Milnor-Witt K-theory is analogous to the definition for Milnor K-theory of Bass and Tate (see [BT73], see also [GS17]).

THEOREM 2.12 (Homotopy invariance). Let F be a field and F(t) the field of rational functions with coefficients in F in one variable t. We have a split short exact sequence

$$0 \to \mathbf{K}^{MW}_{*}(F) \xrightarrow{\mathrm{res}} \mathbf{K}^{MW}_{*}(F(t)) \xrightarrow{d} \bigoplus_{x \in (\mathbb{A}^{1}_{F})^{(1)}} \mathbf{K}^{MW}_{*-1}(\kappa(x), \omega_{x}) \to 0$$

where res = res_{F(t)/F} is the restriction map defined in 2.7 and $d = \bigoplus_{x \in (\mathbb{A}_F^1)^{(1)}} \partial_x$ is the sum of the residue maps defined in 2.11.

Proof. See [Mor12, Theorem 3.24] (actually, Morel does not use twisted sheaves but chooses a generator for each ω_x instead, which is equivalent. Note also that the choice of a generator for each ω_x is the same as a choice of uniformizer for the valuations corresponding to the closed points).

2.13. Let $\phi : E \to F$ be a monogenic finite field extension and choose $x \in F$ such that F = E(x). The homotopy exact sequence implies that for any $\beta \in \mathbf{K}^{\text{MW}}_*(F, \omega_{F/k})$ there exists $\gamma \in \mathbf{K}^{\text{MW}}_*(E(t), \omega_{E(t)/k})$ with the property that $d(\gamma) = \beta$ (note that we identify the element β with a tuple in a direct sum of Milnor-Witt groups which has one entry β and all other entries 0). Now the valuation at ∞ yields a morphism

$$\partial_{\infty} : \mathbf{K}_{*+1}^{\mathrm{MW}}(E(t), \omega_{E(t)/k}) \to \mathbf{K}_{*}^{\mathrm{MW}}(E, \omega_{E/k})$$

which vanishes on the image of $\operatorname{res}_{E(t)/E}$. We denote by $\operatorname{Tr}_{x/E}(\beta)$ the element $-\partial_{\infty}(\gamma)$; it does not depend on the choice of γ . This defines a group morphism

$$\operatorname{Tr}_{x/E} : \mathbf{K}^{\mathrm{MW}}_{*}(E(x), \omega_{F/k}) \to \mathbf{K}^{\mathrm{MW}}_{*}(E, \omega_{E/k})$$

called the *transfer map* and also denoted by $\text{Tr}_{x/E}$. The following result completely characterizes the transfer maps.

LEMMA 2.14 (projection formula). Keeping the previous notations, let $\alpha \in \mathbf{K}^{MW}_{*}(E)$ and $\beta \in \mathbf{K}^{MW}_{*}(E(x))$. We then have

$$\operatorname{Tr}_{x/E}(\operatorname{res}_{E(x)/E}(\alpha) \cdot \beta) = \alpha \cdot \operatorname{Tr}_{x/E}(\beta).$$

Proof. It suffices to prove the result for $\alpha = [u]$ with $u \in E^{\times}$. Let $\gamma \in \mathbf{K}^{\mathrm{MW}}_{*}(E(t), \omega_{E(t)/k})$ such that $d(\gamma) = \beta$. It follows from [Mor12, Proposition 3.17] that for any valuation v, we have $\partial_{v}([u]\gamma) = -\langle -1\rangle[\overline{u}]\partial_{v}(\gamma)$. Thus $-\langle -1\rangle[u]\gamma$ is a lift of $[u]\beta$ and $\partial_{\infty}(-\langle -1\rangle[u]\gamma) =$ $[u]\partial_{v}(\gamma)$. Thus $\operatorname{Tr}_{x/E}(\operatorname{res}_{E(x)/E}(\alpha) \cdot \beta) = \alpha \cdot \operatorname{Tr}_{x/E}(\beta)$. \Box

LEMMA 2.15. Keeping the previous notations, let

$$d = (\bigoplus_x d_x) \oplus d_\infty : \mathbf{K}_{*+1}^{MW}(E(t), \omega_{F(t)/k}) \to (\bigoplus_x \mathbf{K}_*^{MW}(E(x), \omega_{E(x)/k})) \oplus \mathbf{K}_*^{MW}(E, \omega_{E/k})$$

be the total twisted residue morphism (where x runs through the set of monic irreducible polynomials in E(t)). Then, the transfer maps $\operatorname{Tr}_{x/E}$ are the unique morphisms such that $\sum_{x} (\operatorname{Tr}_{x/E} \circ d_x) + d_{\infty} = 0.$

Proof. Straightforward (see [Mor12, §4.2]).

DEFINITION 2.16. Let $F = E(x_1, x_2, \ldots, x_r)$ be a finite extension of a field E and consider the chain of subfields

$$E \subset E(x_1) \subset E(x_1, x_2) \subset \cdots \subset E(x_1, \dots, x_r) = F.$$

Define by induction:

$$\operatorname{Tr}_{x_1,\dots,x_r/E} = \operatorname{Tr}_{x_r/E(x_1,\dots,x_{r-1})} \circ \cdots \circ \operatorname{Tr}_{x_2/E(x_1)} \circ \operatorname{Tr}_{x_1/E}$$

We give an elementary proof of the fact that the definition does not depend on the choice of the factorization (see [Mor12, Theorem 4.27] for the original proof):

THEOREM 2.17. Let $F = E(x_1, \ldots, x_r)/E$ be a finite field extension. Then the map

$$\operatorname{Tr}_{x_1,\ldots,x_r/E}: \mathbf{K}^{MW}_*(F) \to \mathbf{K}^{MW}_*(E)$$

does not depend on the choice of the generating system (x_1, \ldots, x_r) .

3 Proof of the main theorem

3.1 Reduction to the *p*-primary case

We begin with a series of lemmas aimed at reducing Theorem 2.17 to the case of p-primary fields.

LEMMA 3.1. Let F/E be a finite extension of degree n of characteristic zero fields and consider the transfer map $\operatorname{Tr}_{F/E} : \operatorname{GW}(F) \to \operatorname{GW}(E)$. If n is odd, then

$$\operatorname{Tr}_{F/E}(1) = n_{\epsilon}$$

If n is even, then there exist $a_1, \ldots, a_n \in E^{\times}$ such that

$$\operatorname{Tr}_{F/E}(1) = \sum_{i} \langle a_i \rangle$$

Proof. See [Lam05, VII.2.2]. Note that the case n even is not really much information, it is merely the diagonalizability of quadratic forms.

LEMMA 3.2. Let E be a field of characteristic p > 0. Let $\alpha \in GW(E)$ be an element in the kernel of the rank morphism $GW(E) \to \mathbb{Z}$. Then α is nilpotent in GW(E).

Proof. The result is not surprising: in Witt rings, torsion elements are nilpotent, and in characteristic p > 0, then kernel of the rank morphism is torsion.

We give a detailed proof following [LYZ19, Lemma B.4]. As the set of nilpotent elements in the commutative ring GW(E) is an ideal, we may assume $\alpha = \langle t \rangle - 1$ where $t \in E^{\times}$. We have $(1 + \alpha)^2 = \langle t^2 \rangle = 1$, so that $\alpha^2 = -2\alpha$. By induction, we get $\alpha^n = (-2)^{n-1}\alpha$ for $n \ge 1$: we have to show that α is annihilated by a power of two. If p = 2, $2\alpha = 0$ holds (see [Mor12, Lemma 3.9]), i.e. $\alpha^2 = 0$. Now we assume $p \ge 3$ so that there is no danger thinking in terms of usual quadratic forms. We first consider $\mu := \langle -1 \rangle - 1 \in \text{GW}(\mathbb{F}_p)$. The quadratic form $-x^2 - y^2$ over \mathbb{F}_p represents 1 (see [Ser77, Proposition 4,§IV.1.7]) so that $\langle -1 \rangle + \langle -1 \rangle = \langle 1 \rangle + \langle 1 \rangle \in \text{GW}(\mathbb{F}_p)$, i.e. $2\mu = 0 \in \text{GW}(\mathbb{F}_p)$, which gives $\mu^2 = 0$. Let $t \in E^{\times}$ be any nonzero element in an extension *E* of \mathbb{F}_p . The quadratic form $q(x, y) := x^2 - y^2 = (x + y)(x - y)$ represents *t* (this is q((1 + t)/2, (1 - t)/2)), which easily implies that $\langle 1 \rangle + \langle -1 \rangle = \langle t \rangle + \langle -t \rangle$ (see also [Mor12, Lemma 3.7]. This is equivalent to saying $(2 + \mu)\alpha = 0 \in \mathrm{GW}(E)$. It follows that $4\alpha = (2 - \mu)(2 + \mu)\alpha = 0$, and then $\alpha^3 = 0$.

LEMMA 3.3. Consider two finite extensions F/E and L/E of coprime degrees n and m, respectively. Let $x \in \mathbf{K}^{MW}_{*}(E)$ such that $\operatorname{res}_{F/E}(x) = 0 = \operatorname{res}_{L/E}(x)$. Then x = 0.

Proof. Applying the transfer map to $\operatorname{res}_{F/E}(x)$ and $\operatorname{res}_{L/E}(x)$, we see that x is killed by $\operatorname{Tr}_{F/E}(1)$ and $\operatorname{Tr}_{L/E}(1)$, thanks to the projection formula (note that the transfers here are transfers for the Grothendieck-Witt ring, identified with \mathbf{K}_0^{MW}).

In characteristic 0, up to swapping n and m, we may assume that n is odd, hence $\operatorname{Tr}_{F/E}(1) = n_{\epsilon}$ and $\operatorname{Tr}_{L/E}(1) = \sum_{i} \langle a_i \rangle$ for some $a_1, \ldots, a_m \in E^{\times}$. Write n = 2r + 1. There exist $a, b \in \mathbb{Z}$ such that an + bm = r since n and m are coprime. Recall that the hyperbolic form $h = 1 + \langle -1 \rangle$ satisfies $\langle a_i \rangle h = h$ for any i (see [Mor12, Lemma 3.7]). Hence $rh = (an_{\epsilon} + b\sum_i \langle a_i \rangle)h$ and $1 = n_{\epsilon} - rh = (1 - ah) \operatorname{Tr}_{F/E}(1) - bh \operatorname{Tr}_{L/E}(1)$ kills x.

In characteristic p > 0, there exist two nilpotent α and α' in GW(E) such that $\operatorname{Tr}_{F/E}(1) = n + \alpha$ and $\operatorname{Tr}_{L/E}(1) = m + \alpha'$, according to Lemma 3.2. Hence for a natural number *s* large enough, the element *x* is killed by the coprime numbers n^{p^s} and m^{p^s} so that x = 0.

LEMMA 3.4. Let E be a field. Let F_1, \ldots, F_n be finite extensions of coprime degrees d_1, \ldots, d_n . Let $\delta \in \mathbf{K}^{MW}_*(E)$ be an element such that $\operatorname{res}_{F_i/E}(\delta) = 0$ for any i. Then, δ is zero.

Proof. This follows as in Lemma 3.3.

LEMMA 3.5. Let F/E be a field extension and w be a valuation on F which restricts to a nontrivial valuation v on E with ramification index e. We have a commutative square

where $e_{\epsilon} = \sum_{i=1}^{e} \langle -1 \rangle^{i-1}$.

Proof. See [Mor12, Lemma 3.19].

LEMMA 3.6. Let F/E be a field extension and $x \in (\mathbb{A}^1_E)^{(1)}$ a closed point. Then the following diagram

is commutative, where the notation $y \mapsto x$ stands for the closed points of \mathbb{A}_F^1 lying above x, and $e_{y,\epsilon} = \sum_{i=1}^{e_y} \langle -1 \rangle^{i-1}$ is the quadratic form associated to the ramification index of the valuation v_y extending v_x to F(t).

Proof. According to Lemma 3.5, the following diagram

is commutative hence for all closed points in \mathbb{P}^1_F , we have

$$\partial_y (\operatorname{res}_{F(t)/E(t)} \circ \rho_x - (\oplus_y \rho_y) \circ (\oplus_y e_{y,\epsilon} \operatorname{res}_{F(y)/E(x)})) = 0$$

and so the diagram

is commutative, where ρ_x is the splitting of Theorem 2.12. Then, we conclude according to the definition of the Bass-Tate transfer maps 2.13.

REMARK 3.7. The multiplicities e_y appearing in the previous lemma are equal to

$$[E(x):E]_i/[F(y):F]_i$$

where $[E(x) : E]_i$ is the inseparable degree.

THEOREM 3.8 (Strong R1c). Let E be a field, F/E a finite field extension and L/Ean arbitrary field extension. Write $F = E(x_1, \ldots, x_r)$ with $x_i \in F$, $R = F \otimes_E L$ and $\psi_p : R \to R/p$ the natural projection defined for any $p \in \text{Spec}(R)$. Then the diagram

is commutative where m_p is the length of the localized ring $R_{(p)}$.

Proof. We prove the theorem by induction. For r = 1, this is Lemma 3.6. Write $E(x_1) \otimes_E L = \prod_j R_j$ for some Artin local *L*-algebras R_j , and decompose the finite dimensional *L*-algebra $F \otimes_{E(x_1)} R_j$ as $F \otimes_{E(x_1)} R_j = \prod_i R_{ij}$ for some local *L*-algebras R_{ij} . We have $F \otimes_E L \simeq \prod_{i,j} R_{ij}$. Denote by L_j (resp. L_{ij}) the residue fields of the Artin local *L*-algebras R_j (resp. R_{ij}), and m_j (resp. m_{ij}) for their geometric multiplicity. We can conclude as the following diagram commutes

$$\mathbf{K}^{\mathrm{MW}}_{*}(F,\omega_{F/k}) \xrightarrow{\mathrm{Tr}_{x_{1},\ldots,x_{r}/E}} \mathbf{K}^{\mathrm{MW}}_{*}(E(x_{1}),\omega_{E(x_{1})/k}) \xrightarrow{\mathrm{Tr}_{x_{1}/E}} \mathbf{K}^{\mathrm{MW}}_{*}(E,\omega_{E/k}) \xrightarrow{\mathbb{Tr}_{x_{1}/E}} \mathbf{K}^{\mathrm{MW}}_{*}(L_{j},\omega_{L_{j}/k}) \xrightarrow{\mathbb{Tr}_{x_{1}/E}} \mathbf{K}^{\mathrm{MW}}_{*}(L,\omega_{L/k})$$

since both squares are commutative by the inductive hypothesis, the case r = 1, and the multiplicity formula $(mn)_{\epsilon} = m_{\epsilon}n_{\epsilon}$ for any natural numbers m, n.

THEOREM 3.9. Assume that Theorem 2.17 holds for all p-primary fields E for any prime number p. Then the theorem holds for any field E.

Proof. Consider two decompositions

$$E \subset E(x_1) \subset E(x_1, x_2) \subset \cdots \subset E(x_1, \dots, x_r) = F.$$

and

$$E \subset E(y_1) \subset E(y_1, y_2) \subset \cdots \subset E(y_1, \dots, y_s) = F.$$

of F. Let $\alpha \in \mathbf{K}^{\mathrm{MW}}_{*}(F)$ and denote by δ the element $\mathrm{Tr}_{x_1,\dots,x_r/E}(\alpha) - \mathrm{Tr}_{y_1,\dots,y_s/E}(\alpha)$. Fix p a prime number and let L be a maximal prime to p extension of E (L has no nontrivial finite extension of degree prime to p). With the notation of Theorem 3.8, the map $\sum_{\mathfrak{p}} (m_p)_{\epsilon} \mathrm{Tr}_{\psi_{\mathfrak{p}}(x_1),\dots,\psi_{\mathfrak{p}}(x_r)/L}$ does not depend on the choice of x_i according to the assumption. Hence $\mathrm{res}_{L/E}(\delta) = 0$ and we can find a finite extension L_p/E of degree prime to p such that $\mathrm{res}_{L_p/E}(\delta) = 0$. Since this is true for all prime number p, we see that the assumption of Lemma 3.4 are satisfied. Thus $\delta = 0$ and the theorem is proved.

3.2 Proof in the *p*-primary case

PROPOSITION 3.10 (Bass-Tate-Morel Lemma). Let F(x) be a monogenic extension of F. Then $\mathbf{K}^{MW}_{*}(F(x))$ is generated as a left $\mathbf{K}^{MW}_{*}(F)$ -module by elements of the form

$$\boldsymbol{\eta}^m \cdot [p_1(x), p_2(x), \dots, p_n(x)]$$

where the p_i are monic irreducible polynomials of F[t] satisfying

$$\deg(p_1) < \deg(p_2) < \dots < \deg(p_n) \le d - 1$$

where d is the degree of the extension F(x)/F.

Proof. Straightforward computations (see also [Mor12, Theorem 3.24 and Lemma 3.25.1]).

COROLLARY 3.11. Let F/E be a finite field extension and assume one of the following conditions holds:

- F/E is a quadratic extension,
- *F*/*E* is a prime degree *p* extension and *E* has no nontrivial extension of degree prime to *p*.

Then $\mathbf{K}^{MW}_{*}(F)$ is generated as a left $\mathbf{K}^{MW}_{*}(E)$ -module by F^{\times} .

Proof. In both cases, the extension F/E is simple and the only monic irreducible polynomial in E[t] of degree strictly smaller than [F:E] are the polynomials of degree 1. We conclude by Proposition 3.10.

In the following, we fix a prime number p and E a p-primary field.

PROPOSITION 3.12. Let F = E(x) be a monogenic extension of E of degree p. Then the transfers $\operatorname{Tr}_{x/E} : \mathbf{K}^{MW}_*(E(x), \omega_{E(x)/k}) \to \mathbf{K}^{MW}_*(E, \omega_{E/k})$ do not depend on the choice of x.

Proof. According to Lemma 3.11, the group $\mathbf{K}^{\text{MW}}_*(F, \omega_{F/k})$ is generated by products of the form $\operatorname{res}_{F/E}(\alpha) \cdot [\beta]$ with $\alpha \in \mathbf{K}^{\text{MW}}_*(E, \omega_{E/k})$ and $\beta \in F^{\times}$. According to 2.14, we have the projection formula

$$\operatorname{Tr}_{x/E}(\operatorname{res}_{F/E}(\alpha) \cdot [\beta]) = \alpha \cdot \operatorname{Tr}_{F/E}([\beta]).$$

It remains to prove that the right-hand side $Tr_{F/E}([\beta]) \in \mathbf{K}_1^{MW}(E)$ does not depend on a choice of x. For that, we consider the Cartesian square

$$\begin{split} \mathbf{K}_{1}^{\mathrm{MW}}(E) & \longrightarrow \mathbf{I}(E) \\ & \downarrow & \downarrow \\ \mathbf{K}_{1}^{\mathrm{M}}(E) & \longrightarrow \mathbf{I}(E) / \mathbf{I}^{2}(E) \end{split}$$

where $\mathbf{K}_{1}^{\mathrm{M}}(E) = E^{\times}$ and $\mathbf{I}(E)$ is the fundamental ideal (we refer to the proof of [Fas20, Theorem 1.4] with the following remarks: *ibid.* assume the characteristic to be different from 2 but this is not necessary according to [Mor12, Remark 3.12]; the proof of *ibid.* uses Voevodsky's affirmation of Milnor conjecture but this is not needed in our case since we only work in degree n = 1).

By naturality of the previous square, we are reduced to proving the independence of the transfer map for the two cases $\mathbf{K}_1^{\mathrm{M}}(E) = E^{\times}$ and $\mathbf{I}(E)$ which we assume to have elementary proofs somewhere in the literature (recall that a non-elementary proof of Proposition 3.12 can also be found in [Mor12, Chapter 5]). Indeed, for $\mathbf{K}_1^{\mathrm{M}}(E) = E^{\times}$, the transfer map is nothing but the Galois norm; for $\mathbf{I}(E)$, we only have to consider the two cases where E(x)/E is a purely inseparable extension or a separable extension, which are true in characteristic $\neq 2$ according to [Fas08, Lemma 6.4.6] and [Fas20, Example 1.23] (in characteristic 2, we believe the work of Fasel on Witt transfers could be extended but, for the present article, we simply refer to the book of Morel, e.g. [Mor12, Proof of Corollary 5.2 in the case r = 1]).

REMARK 3.13. We may now use the notation $\operatorname{Tr}_{F/E} : \mathbf{K}^{MW}_{*}(F, \omega_{F/k}) \to \mathbf{K}^{MW}_{*}(E, \omega_{E/k})$ if F/E is a field extension of prime degree p.

PROPOSITION 3.14. Let F be a field complete with respect to a discrete valuation v, and F'/F a normal extension of degree p. Denote by v' the unique extension of v to F'. Then the diagram

is commutative.

Proof. This is a particular case of [Mor12, Remark 5.20] (the completeness assumption is not needed). We note that the proof of [Mor12, Remark 5.20] does not depend on [Mor12, Lemma 5.5] (thus there is no loophole in the proof of Theorem 2.17). Moreover, even though the proof of [Mor12, Remark 5.20] is only three pages long, we hope that the completeness assumption could lead to a shorter proof. \Box

COROLLARY 3.15. Let F/E be a normal extension of degree p and let $x \in (\mathbb{A}^1_E)^{(1)}$. Then the diagram

is commutative, where $y \to x$ denotes the set of elements $y \in (\mathbb{A}_F^1)^{(1)}$ mapping to x through the canonical morphism.

Proof. Denote by \hat{E}_x (resp. \hat{F}_y) the completions of E(t) (resp. F(t)) with respect to the valuations defined by x (resp. y). Consider the following diagram

The left-hand square is commutative according to Theorem 3.8. The right-hand square commutes according to Proposition 3.14. Hence the corollary. \Box

LEMMA 3.16. Let L/E be a normal extension of degree p, and let E(a)/E be a monogenic finite extension. Assume that L and E(a) are both subfields of some algebraic extension of E, and denote by L(a) their composite. Then the following diagram

 $is \ commutative.$

Proof. First of all, we note that the vertical maps are independent of choices by Lemma 3.12 (note that if L = E(a), then $\operatorname{Tr}_{L(a)/E(a)} = \operatorname{Id}$ does not depend on any choices). Let x (resp y_0) be the closed point of \mathbb{A}^1_E (resp. \mathbb{A}^1_L) defined by the minimal polynomial of a over E (resp. L). Given $\alpha \in \mathbf{K}^{\mathrm{MW}}_*(L(a), \omega_{L(a)/k})$, we have $\operatorname{Tr}_{a/L}(\alpha) = -\partial_{\infty}(\beta)$ for some $\beta \in \mathbf{K}^{\mathrm{MW}}_{*+1}(L(t), \omega_{L(t)/k})$ satisfying $\partial_{y_0}(\beta) = \alpha$ and $\partial_y(\beta) = 0$ for $y \neq y_0$. By Corollary 3.15

$$\partial_x(\mathrm{Tr}_{L(t)/E(t)}(\beta)) = \sum_{y \mapsto x} \mathrm{Tr}_{\kappa(y)/\kappa(x)}(\partial_y(\beta)) = \mathrm{Tr}_{\kappa(y_0)/\kappa(x)}(\alpha),$$

and, similarly, $\partial_{x'}(\operatorname{Tr}_{L(t)/E(t)}(\beta)) = 0$ for $x \neq x'$. Hence by definition of the transfer map $\operatorname{Tr}_{a/E}$ we have

$$\operatorname{Tr}_{a/E}(\operatorname{Tr}_{L(a)/E(a)}(\alpha)) = -\partial_{\infty}(\operatorname{Tr}_{L(t)/E(t)}(\beta)).$$

Moreover, since the only point of \mathbb{P}^1_L above ∞ is ∞ , another application of Corollary 3.15 gives

$$\partial_{\infty}(\operatorname{Tr}_{L(t)/E(t)}(\beta)) = \operatorname{Tr}_{L/E}(\partial_{\infty}(\beta)).$$

Hence the result.

$$\operatorname{Tr}_{a/E}(\operatorname{Tr}_{L(a)/E(a)}(\alpha)) = -\operatorname{Tr}_{L/E}(\partial_{\infty}(\beta)) = \operatorname{Tr}_{L/E}(\operatorname{Tr}_{a/L}(\alpha)).$$

Proof of Theorem 2.17. We keep the previous notations. We already know that it suffices to treat the case when E has no nontrivial extension of degree prime to p (according to Theorem 3.9). Let p^m be the degree of the extension F/E. We prove the result by induction on m. The case m = 1 follows from Proposition 3.12. Consider two decompositions

$$E \subset E(x_1) \subset E(x_1, x_2) \subset \cdots \subset E(x_1, \dots, x_r) = F$$

and

$$E \subset E(y_1) \subset E(y_1, y_2) \subset \cdots \subset E(y_1, \dots, y_s) = F$$

of F. By Lemma 2.5, the extension $E(x_1)/E$ contains a normal subfield $E(x'_1)$ of degree p over E. Applying Lemma 3.16 with $a = x_1$ and $L = E(x'_1)$ yields $\operatorname{Tr}_{x_1/E} = \operatorname{Tr}_{x'_1/E} \circ \operatorname{Tr}_{x_1/E(x'_1)}$. Hence, without loss of generality, we may assume that $x_1 = x'_1$ and, similarly, $[E(y_1) : E] = p$. Write F_0 for the composite of the fields $E(x_1)$ and $E(y_1)$ in Fand write $F = F_0(z_1, \ldots, z_t)$ with $z_i \in F$. The fields $E(x_1)$ and $E(y_1)$ have no nontrivial prime to p extension, thus we may conclude by the induction hypothesis that the triangles

$$\begin{array}{c} \mathbf{K}^{\mathrm{MW}}_{*}(F,\omega_{F/k}) \xrightarrow{\mathrm{Tr}_{x_{2},\dots,x_{r}/E(x_{1})}} \mathbf{K}^{\mathrm{MW}}_{*}(E(x_{1}),\omega_{E(x_{1})/k}) \\ \xrightarrow{\mathrm{Tr}_{z_{1},\dots,z_{t}/F_{0}}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(F_{0},\omega_{F_{0}/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(x_{1})}} \mathbf{K}^{\mathrm{MW}}_{*}(E(x_{1}),\omega_{E(x_{1})/k}) \\ \xrightarrow{\mathrm{Tr}_{F_{0}/E(x_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(F_{0},\omega_{F_{0}/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(x_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(x_{1}),\omega_{E(x_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(x_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(F_{0},\omega_{F_{0}/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/K}} \underbrace{\mathbf{K}^{\mathrm{W}}_{*}(F_{0}/k)} \xrightarrow{\mathrm{Tr}_{F_{0}/K}} \underbrace{\mathbf{K}^{\mathrm{W}}_{*}(F_{0}/k)} \xrightarrow{\mathrm{Tr}_{F_{0}/K}} \underbrace{\mathbf{K}^{\mathrm{W}}_{*}(F_{0}/$$

and

$$\begin{array}{c} \mathbf{K}^{\mathrm{MW}}_{*}(F,\omega_{F/k}) \xrightarrow{\mathrm{Tr}_{y_{2},\ldots,y_{s}/E(y_{1})}} \mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k}) \\ \xrightarrow{\mathrm{Tr}_{z_{1},\ldots,z_{t}/F_{0}}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(F_{0},\omega_{F_{0}/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})}} \mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k}) \\ \xrightarrow{\mathrm{Tr}_{z_{1},\ldots,z_{t}/F_{0}}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(F_{0},\omega_{F_{0}/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k}} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k}} \underbrace{\mathbf{K}^{\mathrm{MW}}_{*}(E(y_{1}),\omega_{E(y_{1})/k})} \xrightarrow{\mathrm{Tr}_{F_{0}/E(y_{1})/k$$

are commutative.

Moreover, Lemma 3.16 for $a = x_1$ and $L = E(y_1)$ implies that the following diagram

is commutative. Putting everything together, we conclude that $\operatorname{Tr}_{x_1,\ldots,x_r/E} = \operatorname{Tr}_{y_1,\ldots,y_s/E}$.

3.3 Applications in motivic homotopy theory

We end this section with a discussion of a conjecture of Morel in motivic homotopy theory. Milnor-Witt K-theory is a fundamental object in motivic homotopy theory since it computes the homotopy groups of spheres (in the sense of [Mor12, Chapter 6]). Moreover, Milnor-Witt K-theory is a particular case of the notion of *homotopy sheaf* as defined below.

3.17. Consider $M \in \mathbf{HI}(k)$ a homotopy sheaf, i.e. a Nisnevich sheaf over the category of smooth k-schemes \mathbf{Sm}_k with value in the category of abelian groups and satisfying the following property (strong \mathbb{A}^1 -invariance): for any smooth scheme X, the map

$$H^i(X, M) \to H^i(\mathbb{A}^1_X, M)$$

of Nisnevich sheaf cohomology groups induced by the canonical projection $\mathbb{A}^1_X \to X$ is a bijection for $i \in \{0, 1\}$.

For instance, the Milnor-Witt K-theory \mathbf{K}_n^{MW} in degree *n* defines a homotopy sheaf (for any fixed integer *n*).

Recall that the contraction of M is the sheaf defined by

$$X \mapsto \ker(M(\mathbb{G}_m \times X) \to M(X))$$

and is denoted by M_{-1} ; this is again a homotopy sheaf. Moreover, M_{-1} has a structure of GW-module and, for any valued field (F, v), we have a (twisted) residue map

$$M(F) \to M(\kappa(v), \omega_v) := M(\kappa(v)) \otimes_{\mathbb{Z}[\kappa(v)^{\times}]} \mathbb{Z}[\omega_v^{\times}].$$

3.18. Let M be a homotopy sheaf and M_{-1} its contraction. We recall the construction of the Bass-Tate transfer maps

$$\operatorname{Tr}_{\psi} = \operatorname{Tr}_{F/E} : M_{-1}(F, \omega_{F/k}) \to M_{-1}(E, \omega_{E/k})$$

defined for any finite map $\psi: E \to F$ of fields.

THEOREM 3.19. Let $M \in \mathbf{HI}(k)$ be a homotopy sheaf. Let F be a field and F(t) the field of rational functions with coefficients in F in one variable t. We have a split short exact sequence

$$0 \to M(F) \stackrel{\text{res}}{\to} M(F(t)) \stackrel{d}{\to} \bigoplus_{x \in (\mathbb{A}_F^1)^{(1)}} M_{-1}(\kappa(x), \omega_x) \to 0$$

where $d = \bigoplus_{x \in (\mathbb{A}_F^1)^{(1)}} \partial_x$ is the usual differential (see [Mor12, Chapter 4]). Proof. See [Mor12, §4.2, page 97] and [Mor12, Theorem 5.38].

DEFINITION 3.20 (Coresidue maps). Keeping the previous notations, the fact that the homotopy sequence is split allows us to define *coresidue maps*

$$\rho_x: M_{-1}(\kappa(x), \omega_x) \to M(F(t))$$

for any closed points $x \in (\mathbb{A}_F^1)^{(1)}$, satisfying $\partial_x \circ \rho_x = \mathrm{Id}_{\kappa(x)}$ and $\partial_y \circ \rho_x = 0$ for $x \neq y$ where $y \in (\mathbb{A}_F^1)^{(1)}$.

DEFINITION 3.21 (Bass-Tate transfers). Let $M \in \mathbf{HI}(k)$ be a homotopy sheaf. Let F be a field and F(t) the field of rational functions with coefficients in F in one variable t. For $x \in (\mathbb{A}_F^1)^{(1)}$, we define the Bass-Tate transfer

$$\operatorname{Tr}_{x/F}: M_{-1}(F(x), \omega_{F(x)/k}) \to M_{-1}(F, \omega_{F/k})$$

by the formula $\operatorname{Tr}_{x/F} = -\partial_{\infty} \circ \rho_x$.

REMARK 3.22. There is also an equivalent definition of the Bass-Tate transfers that does not use the coresidue maps (see [Mor12, §4.2]).

DEFINITION 3.23. Let $F = E(x_1, x_2, ..., x_r)$ be a finite extension of a field E and consider the chain of subfields

$$E \subset E(x_1) \subset E(x_1, x_2) \subset \cdots \subset E(x_1, \dots, x_r) = F.$$

Define by induction:

$$\operatorname{Tr}_{x_1,\ldots,x_r/E} = \operatorname{Tr}_{x_r/E(x_1,\ldots,x_{r-1})} \circ \cdots \circ \operatorname{Tr}_{x_2/E(x_1)} \circ \operatorname{Tr}_{x_1/E}$$

Conjecture 3.24 (Morel conjecture). Let $F = E(x_1, \ldots, x_r)/E$ be a finite field extension. Then the map

$$\operatorname{Tr}_{x_1,\dots,x_r/E}: M_{-1}(F,\omega_{F/k}) \to M_{-1}(E,\omega_{E/k})$$

does not depend on the choice of the generating system (x_1, \ldots, x_r) .

REMARK 3.25. 1. This was claimed by Morel in [Mor12, Remark 4.31] and [Mor11, Remark 5.10] (see also [Bac20, Remark 4.3] for a similar conjecture).

- 2. Morel proved in [Mor12, Chapter 4] that the conjecture is true if the contracted homotopy sheaf M_{-1} is replaced by M_{-2} . The proof of Morel uses in a fundamental way the cohomology group $H^2((\mathbb{P}^1)^2, M_{-2})$ and cannot be easily applied to prove the conjecture in full generality.
- 3. In [Fel20b, Theorem 6.1.6], the author proved that, if *M* is a homotopy sheaf, then Conjecture 3.24 is true if and only if *M* has a structure of Milnor-Witt transfers (or, equivalently, a structure of framed transfers).
- 4. We also know that the conjecture is true in full generality if we work with rational homotopy sheaves $M_{\mathbb{Q},-1}$ (see [Fel20b, Theorem 4.1.19]).

Following the ideas of the previous section, we can reduce the conjecture to the case of p-primary fields.

THEOREM 3.26. In order to prove Conjecture 3.24 (i.e. a contracted homotopy sheaf M_{-1} has functorial transfers), it suffices to consider the case of p-primary fields (where p is a prime number).

Proof. We can use verbatim the proof of Theorem 3.9 where Theorem 3.8 is replaced by [Fel20b, Theorem 4.1.16] and Lemma 3.4 still applies thanks to more general projection formulas [Fel20b, Theorem 4.1.15]. \Box

We still have hope to prove the conjecture in full generality with the help of the previous theorem.

References

- [Bac20] T. Bachmann, The zeroth \mathbb{P}^1 -stable homotopy sheaf of a motivic space, arXiv:2003.12021v1, 2020.
- [BCD⁺20] T. Bachmann, B. Calmès, F. Déglise, J. Fasel, and P. Østvær, Milnor-Witt Motives, arXiv:2004.06634v1, 2020.
- [BM00] J. Barge and F. Morel, Groupe de Chow des cycles orientés et classe d'Euler des fibrés vectoriels, C. R. Acad. Sci., Paris, Sér. I Math. 330 (2000), no. 4, 287–290.
- [BT73] H. Bass and J. Tate, The Milnor ring of a global field, "Classical" algebraic Ktheory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972), pp. 349–446. Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973.
- [Dé12] F. Déglise, Around the Gysin triangle. I, In Regulators. Regulators III conference, Barcelona, Spain, July 12–22, 2010. Proceedings, pages 77–116. Providence, RI: American Mathematical Society (AMS), 2012.
- [Fas08] J. Fasel, Groupes de Chow-Witt, Mém. Soc. Math. Fr. (N.S.), No. 113 (2008), viii+197 pp.
- [Fas20] J. Fasel, Lectures on Chow-Witt groups, "Motivic homotopy theory and refined enumerative geometry", Contemp. Math. 745, 2020.

- [Fel20a] N. Feld, Milnor-Witt cycle modules, (English) Zbl 07173201 J. Pure Appl. Algebra 224 (2020), no. 7, 106298, 44 pp.
- [Fel20b] N. Feld, MW-homotopy sheaves and Morel generalized transfers, arXiv:2007.15069 [math.AG], 2020.
- [Fel21] N. Feld, Morel homotopy modules and Milnor-Witt cycle modules, Doc. Math. 26, 617-659, 2021.
- [FSV00] Eric M. Friedlander, A. Suslin, and V. Voevodsky, In Cycles, transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud. Princeton Univ. Press, Princeton, NJ, 2000.
- [GP18] G. Garkusha and I. Panin, Homotopy invariant presheaves with framed transfers, arXiv:1504.00884v3, 2018.
- [GS17] Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology. 2nd revised and updated edition., volume 165. Cambridge: Cambridge University Press, 2nd revised and updated edition edition, 2017.
- [Kat80] K. Kato, A generalization of local class field theory by using K-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683.
- [Lam05] T. Y. Lam, Introduction to quadratic forms over fields., volume 67. Providence, RI: American Mathematical Society (AMS), 2005.
- [LYZ19] M. Levine, Y. Yang, and G. Zhao, Algebraic elliptic cohomology theory and flops I, Mathematische Annalen volume 375, pages1823–1855, 2019.
- [Mor11] Fabien Morel, On the Friedlander-Milnor conjecture for groups of small rank, In Current developments in mathematics, 2010, pages 45–93. Somerville, MA: International Press, 2011.
- [Mor12] F. Morel, \mathbb{A}^1 -algebraic topology over a field, volume 2052. Berlin: Springer, 2012.
- [Ser77] J.-P. Serre, Cours d'arithmétique, 2me ed. Le Mathematicien. Paris: Presses Universitaires de France. 1977. 188 pp.
- [Sha82] Jack Shapiro, Transfer in Galois cohomology commutes with transfer in the Milnor ring, J. Pure Appl. Algebra, 23 (1982), no. 1, 97–108.
- [Sta21] The Stacks Project Authors, Stacks Project https://stacks.math. columbia.edu, 2021

[Suz82] Michio Suzuki, Group Theory I, Grundlehren der Mathematischen Wissenschaften, vol. 247, Springer-Velag, New York, 1982.

NIELS FELD TOULOUSE MATHEMATICS INSTITUTE PAUL SABATIER UNIVERSITY 118 ROUTE DE NARBONNE, 31400, TOULOUSE FRANCE *E-mail address*: niels.feld@math.univtoulouse.fr