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1 Milnor K-theory

The Milnor K-groups KM
n (k) attached to a field k is the quotient of the

n-th tensor power (k×)⊗n of the multiplicative group of k by the subgroup
generated by those elements a1 ⊗ · · · ⊗ an for which ai + aj = 1 for some
1 ≤ i < j ≤ n. Thus KM

0 (k) = Z and KM
1 (k) = k×. Elements of KM

n (k) are
called symbols; we write [a1, . . . , an] for the image of a1⊗· · ·⊗an in KM

n (k).

1. Show that Milnor K-groups are functorial with respect to field ex-
tensions: given an inclusion ϕ : k ⊂ K, there is a natural map
iK/k : KM

n (k)→ KM
n (K) induced by ϕ.

Given α ∈ KM
n (K), we shall often abbreviate iK/k(α) by αK .

2. Show that the product pairings

(k×)n⊗ × (k×)m⊗

induce a structure of graded ring on

KM
∗ (k) =

⊕
n≥0K

M
n (k).

3. (a) Prove that the group KM
2 (k) satisfies the relations

[x,−x] = 0 and [x, x] = [x,−1].

(b) Prove that the product operation on KM
∗ (k) is graded-

commutative, i.e. it satisfies

[α, β] = (−1)nm[β, α]

for α ∈ KM
n (k) and β ∈ KM

m (k)

4. Let F be a finite field. Prove that, for all n > 1, the groups KM
n (F)

are trivial.
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5. Let K be a field equipped with a discrete valuation v : K× → Z.
Denote by Ov the associated valuation ring and by κ(v) its residue
field.

(a) Fix π a local parameter (i.e. an element satisfying v(π) = 1). For
n a natural number, show that KM

n (K) is generated by symbols
of the form [π, u2, . . . , un] and [u1, . . . , un] where ui are units in
Ov.

(b) For each n > 0, there exists a unique morphism

∂M : KM
n (K)→ KM

n−1(κ(v))

satisfying

∂M ([π, u2, . . . , un]) = [ū2, . . . , ūn)

for all local parameters π and all units ui, where ūi denotes the
image of ui in κ(v).
Moreover, once a local parameter π is fixed, there is a unique
morphism

sMπ : KM
n (K)→ KM

n (κ(v))

with the property

sMπ ([πi1u1, . . . , π
inun]) = [ū1, . . . , ūn]

for all integers ij and units ui of Ov.
(c) Prove that the tame symbol ∂M : KM

1 (K) → K0(κ(v)) is the
valuation map v : K× → Z, and that the tame symbol ∂M :
KM

2 (K)→ KM
1 (κ(v)) is given by the formula

∂M ([a, b]) = (−1)v(a)v(b)av(b)b−v(a)

where the lines denotes the image in κ(v).
(d) Prove that, for [a1, . . . , an] ∈ KM

n (K), one has the formula

sMπ ([a1, . . . , an]) = ∂M ([−π, a1, . . . , an])

for all local parameters π.
(e) Let L/K be a field extension and bL a discrete valuation of L

extending v with residue field κ(vL) and ramification index e.
Denoting the associated tame symbol by ∂ML , one has for all α ∈
KM
n (K)

∂ML (αL) = e · ∂M (α).

(f) Denote by Un the subgroup ofKM
n (K) generated by those symbols

[u1, . . . un] where all the ui are units in Ov, and U1
n ⊂ KM

n (K)
the subgroup generated by symbols [x1, . . . , xn] with x1 a unit in
Ov satisfying x1 = 1.
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i. Prove that U1
n ⊂ Un.

ii. Prove that we have exact sequences

0 // Un // KM
n (K)

∂M // KM
n−1(κ(v)) // 0

and

0 // U1
n

// KM
n (K)

(sMπ ,∂
M )
// KM

n (κ(v))⊕KM
n−1(κ(v)) // 0.

(g) Assume moreover that K is complete with respect to v, and let
m > 0 be an integer invertible in κ(v).
Prove that the pair (sMπ , ∂

M ) induces an isomorphism

KM
n (K)/mKM

n (K) '
KM
n (κ(v))/mKM

n (κ(v))⊕KM
n−1(κ(v))/mKM

n−1(κ(v)).

6. Recall that the discrete valuations of k(t) trivial on k correspond to the
local rings of closed points P on the projective line P1

k. As before, we
denote by κ(P ) their residue fields and by vP the associated valuations.
At each closed point P 6=∞ a local parameter is furnished by a monic
irreducible polynomial πP ∈ k[t]; at P = ∞ one may take πP = t−1.
The degree of the field extension [κ(P ), k] is called the degree of the
closed point P ; it equals the degree of the polynomial πP . Thus we
obtain tame symbols

∂MP : KM
n (k(t))→ KM

n−1(κ(P ))

and specialization maps

sMπ : KM
n (k(t))→ KM

n (κ(P )).

(a) Show that the image of the product map

∂M := (∂MP ) : KM
n (k(t))→

∏
P∈P1−{∞}K

M
n−1(κ(P ))

lies in the direct sum.
(b) Denote by Ld the subgroup of KM

n (k(t)) generated by those sym-
bols [f1, . . . , fn] where fi are polynomials in k[t] of degree ≤ d.
For each d > 0, consider the map

∂Md : KM
n (k(t))→

⊕
deg(P )=dK

M
n−1(κ(P ))

defined as the direct sum of the maps ∂MP for all closed points P
of degree d.
Prove that its restriction to Ld induces an isomorphism

∂
M
d : Ld/Ld−1 '

⊕
deg(P )=dK

M
n−1(κ(P )).

(c) (Homotopy invariance) Prove that the sequence
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0 // KM
n (k) // KM

n (k(t))
∂M //

⊕
P∈P1−{∞}K

M
n−1(κ(P )) // 0

is exact and split by the specialization map sMt−1 at ∞.

2 Milnor-Witt K-theory

1. Generalize the previous results to the Milnor-Witt K-groups KMW
∗ (k).

3 Smooth models

1. Let E be a finitely generated field over the perfect field k. By definition,
a smooth model of E is an affine smooth scheme X = SpecA of finite
type such that A is a sub-k-algebra of E, with function field E.

Convince yourself that such a smooth model always exists.

2. Let E/k and L/k be two extensions and ϕ : E → L a morphism such
that the extension L/E is finite. By definition, we call k-model of L/E
any triplet ((X,x), (Y, y), f : Y → X) such that (X,x) is a model of
E/k, (Y, y) is a model of L/k and f is a dominant finite morphism
making the following diagram commutative:

SpecL
Specϕ

//

y

��

SpecE

x
��

Y
f

// X

where the vertical maps are induced by the points x and y.

(a) Let f : Y → X be an equidimensional finite morphism of schemes.
Assume that U is a dense open subscheme of Y .
Prove that the open subscheme f−1(X − f(Y −U)) is dense con-
taining U .

(b) Let E/k be an extension and E/L a finite extension of fields.
Prove that there exists a k-model of L/E.

3. Let E/k be an extension and L/E a finite extension. Consider f :
Y → X and f ′ : Y ′ → X ′ two k-models of L/E.

Prove that there is a k-model f ′′ : Y ′′ → X ′′ of L/E such that the
diagram
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Y
f
// X

Y ′′
f ′′
//

OO

��

X ′′

OO

��

Y ′
f ′
// X ′

is commutative and compatible with the base points.

4 Grothendieck-Witt groups

1. Let E be a field of characteristic p > 0. Let α ∈ GW(E) be an element
in the kernel of the rank morphism GW(E)→ Z.
Prove that α is nilpotent in GW(E).

5 Enumerative geometry

5.1 Apollonius circles

1. Show that the two following definitions are equivalent:

(a) A circle in P2 is given by the equation

(x− az)2 + (y − bz)2 = r2z2.

(b) A circle in P2 is a conic given by V (f) where f ∈ (z, x2 + y2).

2. Define

Φ = {(r, C) ∈ D × P3 |C is tangent to D at r}

where D is a smooth circle and P3 is viewed as the space of circles.

Prove that the correspondence Φ is 2-dimensional and irreducible.

3. Denote by π2 : Φ → P3 the second canonical projection and ZD =
π2(Φ) its image.

Prove that ZD has dimension 2.

4. Consider a line L inside P3. Viewing P3 again as the space of circles,
L parameterizes a family of circles {Ct}t∈P3 .

Assuming L is generic, prove that L ∩ ZD consists of 2 points.

Conclude that ZD is a quadric surface.

5. Let C be a circle tangent to D. Prove that the line between C and D
is in ZD. Hence ZD is a quadric cone with vertex in D.
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6. Given three circles in general position, how many circles are tangent
to all three?
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