Problems and exercises in motivic homotopy theory PCMI Graduate Summer School

Frédéric Déglise and Niels Feld

12-16 July 2021

1 Milnor K-theory

The Milnor K-groups $K_{n}^{M}(k)$ attached to a field k is the quotient of the n-th tensor power $\left(k^{\times}\right)^{\otimes n}$ of the multiplicative group of k by the subgroup generated by those elements $a_{1} \otimes \cdots \otimes a_{n}$ for which $a_{i}+a_{j}=1$ for some $1 \leq i<j \leq n$. Thus $K_{0}^{M}(k)=\mathbb{Z}$ and $K_{1}^{M}(k)=k^{\times}$. Elements of $K_{n}^{M}(k)$ are called symbols; we write $\left[a_{1}, \ldots, a_{n}\right]$ for the image of $a_{1} \otimes \cdots \otimes a_{n}$ in $K_{n}^{M}(k)$.

1. Show that Milnor K-groups are functorial with respect to field extensions: given an inclusion $\varphi: k \subset K$, there is a natural map $i_{K / k}: K_{n}^{M}(k) \rightarrow K_{n}^{M}(K)$ induced by φ.
Given $\alpha \in K_{n}^{M}(K)$, we shall often abbreviate $i_{K / k}(\alpha)$ by α_{K}.
2. Show that the product pairings

$$
\left(k^{\times}\right)^{n \otimes} \times\left(k^{\times}\right)^{m \otimes}
$$

induce a structure of graded ring on

$$
K_{*}^{M}(k)=\bigoplus_{n \geq 0} K_{n}^{M}(k) .
$$

3. (a) Prove that the group $K_{2}^{M}(k)$ satisfies the relations

$$
[x,-x]=0 \text { and }[x, x]=[x,-1] .
$$

(b) Prove that the product operation on $K_{*}^{M}(k)$ is gradedcommutative, i.e. it satisfies

$$
[\alpha, \beta]=(-1)^{n m}[\beta, \alpha]
$$

for $\alpha \in K_{n}^{M}(k)$ and $\beta \in K_{m}^{M}(k)$
4. Let \mathbf{F} be a finite field. Prove that, for all $n>1$, the $\operatorname{groups} K_{n}^{M}(\mathbf{F})$ are trivial.
5. Let K be a field equipped with a discrete valuation $v: K^{\times} \rightarrow \mathbb{Z}$. Denote by \mathcal{O}_{v} the associated valuation ring and by $\kappa(v)$ its residue field.
(a) Fix π a local parameter (i.e. an element satisfying $v(\pi)=1$). For n a natural number, show that $K_{n}^{M}(K)$ is generated by symbols of the form $\left[\pi, u_{2}, \ldots, u_{n}\right]$ and $\left[u_{1}, \ldots, u_{n}\right]$ where u_{i} are units in \mathcal{O}_{v}.
(b) For each $n>0$, there exists a unique morphism

$$
\partial^{M}: K_{n}^{M}(K) \rightarrow K_{n-1}^{M}(\kappa(v))
$$

satisfying

$$
\partial^{M}\left(\left[\pi, u_{2}, \ldots, u_{n}\right]\right)=\left[\overline{u_{2}}, \ldots, \overline{u_{n}}\right)
$$

for all local parameters π and all units u_{i}, where $\overline{u_{i}}$ denotes the image of u_{i} in $\kappa(v)$.
Moreover, once a local parameter π is fixed, there is a unique morphism

$$
s_{\pi}^{M}: K_{n}^{M}(K) \rightarrow K_{n}^{M}(\kappa(v))
$$

with the property

$$
s_{\pi}^{M}\left(\left[\pi^{i_{1}} u_{1}, \ldots, \pi^{i_{n}} u_{n}\right]\right)=\left[\overline{u_{1}}, \ldots, \overline{u_{n}}\right]
$$

for all integers i_{j} and units u_{i} of \mathcal{O}_{v}.
(c) Prove that the tame symbol $\partial^{M}: K_{1}^{M}(K) \rightarrow K_{0}(\kappa(v))$ is the valuation map $v: K^{\times} \rightarrow \mathbb{Z}$, and that the tame symbol ∂^{M} : $K_{2}^{M}(K) \rightarrow K_{1}^{M}(\kappa(v))$ is given by the formula

$$
\partial^{M}([a, b])=(-1)^{v(a) v(b)} \overline{a^{v(b)} b^{-v(a)}}
$$

where the lines denotes the image in $\kappa(v)$.
(d) Prove that, for $\left[a_{1}, \ldots, a_{n}\right] \in K_{n}^{M}(K)$, one has the formula

$$
s_{\pi}^{M}\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\partial^{M}\left(\left[-\pi, a_{1}, \ldots, a_{n}\right]\right)
$$

for all local parameters π.
(e) Let L / K be a field extension and b_{L} a discrete valuation of L extending v with residue field $\kappa\left(v_{L}\right)$ and ramification index e. Denoting the associated tame symbol by ∂_{L}^{M}, one has for all $\alpha \in$ $K_{n}^{M}(K)$

$$
\partial_{L}^{M}\left(\alpha_{L}\right)=e \cdot \partial^{M}(\alpha)
$$

(f) Denote by U_{n} the subgroup of $K_{n}^{M}(K)$ generated by those symbols [$u_{1}, \ldots u_{n}$] where all the u_{i} are units in \mathcal{O}_{v}, and $U_{n}^{1} \subset K_{n}^{M}(K)$ the subgroup generated by symbols $\left[x_{1}, \ldots, x_{n}\right]$ with x_{1} a unit in \mathcal{O}_{v} satisfying $\bar{x}_{1}=1$.
i. Prove that $U_{n}^{1} \subset U_{n}$.
ii. Prove that we have exact sequences

$$
0 \longrightarrow U_{n} \longrightarrow K_{n}^{M}(K) \xrightarrow{\partial^{M}} K_{n-1}^{M}(\kappa(v)) \longrightarrow 0
$$

and

$$
0 \longrightarrow U_{n}^{1} \longrightarrow K_{n}^{M}(K) \stackrel{\left(s_{\pi}^{M}, \partial^{M}\right)}{\longrightarrow} K_{n}^{M}(\kappa(v)) \oplus K_{n-1}^{M}(\kappa(v)) \longrightarrow 0
$$

(g) Assume moreover that K is complete with respect to v, and let $m>0$ be an integer invertible in $\kappa(v)$.
Prove that the pair $\left(s_{\pi}^{M}, \partial^{M}\right)$ induces an isomorphism

$$
\begin{gathered}
K_{n}^{M}(K) / m K_{n}^{M}(K) \simeq \\
K_{n}^{M}(\kappa(v)) / m K_{n}^{M}(\kappa(v)) \oplus K_{n-1}^{M}(\kappa(v)) / m K_{n-1}^{M}(\kappa(v)) .
\end{gathered}
$$

6. Recall that the discrete valuations of $k(t)$ trivial on k correspond to the local rings of closed points P on the projective line \mathbb{P}_{k}^{1}. As before, we denote by $\kappa(P)$ their residue fields and by v_{P} the associated valuations. At each closed point $P \neq \infty$ a local parameter is furnished by a monic irreducible polynomial $\pi_{P} \in k[t]$; at $P=\infty$ one may take $\pi_{P}=t^{-1}$. The degree of the field extension $[\kappa(P), k]$ is called the degree of the closed point P; it equals the degree of the polynomial π_{P}. Thus we obtain tame symbols

$$
\partial_{P}^{M}: K_{n}^{M}(k(t)) \rightarrow K_{n-1}^{M}(\kappa(P))
$$

and specialization maps

$$
s_{\pi}^{M}: K_{n}^{M}(k(t)) \rightarrow K_{n}^{M}(\kappa(P))
$$

(a) Show that the image of the product map

$$
\partial^{M}:=\left(\partial_{P}^{M}\right): K_{n}^{M}(k(t)) \rightarrow \prod_{P \in \mathbb{P}^{1}-\{\infty\}} K_{n-1}^{M}(\kappa(P))
$$

lies in the direct sum.
(b) Denote by L_{d} the subgroup of $K_{n}^{M}(k(t))$ generated by those symbols $\left[f_{1}, \ldots, f_{n}\right]$ where f_{i} are polynomials in $k[t]$ of degree $\leq d$. For each $d>0$, consider the map

$$
\partial_{d}^{M}: K_{n}^{M}(k(t)) \rightarrow \bigoplus_{\operatorname{deg}(P)=d} K_{n-1}^{M}(\kappa(P))
$$

defined as the direct sum of the maps ∂_{P}^{M} for all closed points P of degree d.
Prove that its restriction to L_{d} induces an isomorphism

$$
\bar{\partial}_{d}^{M}: L_{d} / L_{d-1} \simeq \bigoplus_{\operatorname{deg}(P)=d} K_{n-1}^{M}(\kappa(P))
$$

(c) (Homotopy invariance) Prove that the sequence

$$
0 \longrightarrow K_{n}^{M}(k) \longrightarrow K_{n}^{M}(k(t)) \xrightarrow{\partial^{M}} \bigoplus_{P \in \mathbb{P}^{1}-\{\infty\}} K_{n-1}^{M}(\kappa(P)) \longrightarrow 0
$$

is exact and split by the specialization $\operatorname{map} s_{t^{-1}}^{M}$ at ∞.

2 Milnor-Witt K-theory

1. Generalize the previous results to the Milnor-Witt K-groups $\mathbf{K}_{*}^{\mathrm{MW}}(k)$.

3 Smooth models

1. Let E be a finitely generated field over the perfect field k. By definition, a smooth model of E is an affine smooth scheme $X=\operatorname{Spec} A$ of finite type such that A is a sub- k-algebra of E, with function field E.

Convince yourself that such a smooth model always exists.
2. Let E / k and L / k be two extensions and $\varphi: E \rightarrow L$ a morphism such that the extension L / E is finite. By definition, we call k-model of L / E any triplet $((X, x),(Y, y), f: Y \rightarrow X)$ such that (X, x) is a model of $E / k,(Y, y)$ is a model of L / k and f is a dominant finite morphism making the following diagram commutative:

where the vertical maps are induced by the points x and y.
(a) Let $f: Y \rightarrow X$ be an equidimensional finite morphism of schemes. Assume that U is a dense open subscheme of Y.
Prove that the open subscheme $f^{-1}(X-f(Y-U))$ is dense containing U.
(b) Let E / k be an extension and E / L a finite extension of fields.

Prove that there exists a k-model of L / E.
3. Let E / k be an extension and L / E a finite extension. Consider f : $Y \rightarrow X$ and $f^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ two k-models of L / E.
Prove that there is a k-model $f^{\prime \prime}: Y^{\prime \prime} \rightarrow X^{\prime \prime}$ of L / E such that the diagram

is commutative and compatible with the base points.

4 Grothendieck-Witt groups

1. Let E be a field of characteristic $p>0$. Let $\alpha \in \mathrm{GW}(E)$ be an element in the kernel of the rank morphism $\mathrm{GW}(E) \rightarrow \mathbb{Z}$.
Prove that α is nilpotent in $\operatorname{GW}(E)$.

5 Enumerative geometry

5.1 Apollonius circles

1. Show that the two following definitions are equivalent:
(a) A circle in \mathbb{P}^{2} is given by the equation

$$
(x-a z)^{2}+(y-b z)^{2}=r^{2} z^{2} .
$$

(b) A circle in \mathbb{P}^{2} is a conic given by $V(f)$ where $f \in\left(z, x^{2}+y^{2}\right)$.
2. Define

$$
\Phi=\left\{(r, C) \in D \times \mathbb{P}^{3} \mid C \text { is tangent to } D \text { at } r\right\}
$$

where D is a smooth circle and \mathbb{P}^{3} is viewed as the space of circles. Prove that the correspondence Φ is 2-dimensional and irreducible.
3. Denote by $\pi_{2}: \Phi \rightarrow \mathbb{P}^{3}$ the second canonical projection and $Z_{D}=$ $\pi_{2}(\Phi)$ its image.
Prove that Z_{D} has dimension 2.
4. Consider a line L inside \mathbb{P}^{3}. Viewing \mathbb{P}^{3} again as the space of circles, L parameterizes a family of circles $\left\{C_{t}\right\}_{t \in \mathbb{P}^{3}}$.
Assuming L is generic, prove that $L \cap Z_{D}$ consists of 2 points.
Conclude that Z_{D} is a quadric surface.
5. Let C be a circle tangent to D. Prove that the line between C and D is in Z_{D}. Hence Z_{D} is a quadric cone with vertex in D.
6. Given three circles in general position, how many circles are tangent to all three?

References

