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Abstract

We explore a conjecture of Morel about the Bass-Tate transfers defined on the
contraction of a homotopy sheaf and prove that the conjecture is true with
rational coefficients. Moreover, we study the relations between (contracted)
homotopy sheaves, sheaves with Morel generalized transfers and Milnor-Witt
homotopy sheaves, and prove an equivalence of categories. As applications,
we describe the essential image of the canonical functor that forgets Milnor-
Witt transfers and use these results to discuss the conservativity conjecture
in motivic homotopy theory due to Bachmann and Yakerson.
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1. Introduction

1.1. Current work
In Morel (2012), Morel studied homotopy invariant Nisnevich sheaves

in order to provide computational tools in A1-homotopy analogous to Vo-
evodsky’s theory of sheaves with transfers. The most basic result is that
(unramified) sheaves are characterized by their sections on fields and some
extra data (see Subsection 2.1). One of the main theorem of Morel (2012)
is the equivalence between the notions of strongly A1-invariance and strictly
A1-invariance for sheaves of abelian groups (see loc. cit. Theorem 1.16). In
order to prove this, Morel defined geometric transfers on the contractionM−1

of a homotopy sheaf (i.e. a strongly A1-invariant Nisnevich sheaf of abelian
groups). The definition is an adaptation of the original one of Bass and Tate
for Milnor K-theory Bass and Tate (1973). Morel proved that the transfers
are functorial (i.e. they do not depend on the choice of generators) for any
two-fold contractionM−2 of a homotopy sheaf and conjectured that the result
should hold for M−1 (see Conjecture 4.1.13 or (Morel, 2012, Remark 4.31)).

The notion of sheaves with generalized transfers was first defined in (Morel,
2011, Definition 5.7) as a way to formalize the different structures naturally
arising on some homotopy sheaves. In Section 3, we give a slightly modi-
fied definition of sheaves with generalized transfers which takes into account
twists by the usual line bundles. Following (Morel, 2012, Chapter 5), we
define the Rost-Schmid complex associated to such homotopy sheaves and
study the usual pushforward maps f∗, pullback maps g∗, GW-action 〈a〉 and
residue maps ∂. Moreover, we prove the following theorem.
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Theorem 1 (see Theorem 3.2.4). Let M ∈ HIgtr(k) be a homotopy sheaf
with generalized transfers. The presheaf Γ̃∗(M) of abelian groups, defined by

Γ̃∗(M)(X) = A0(X,M)

for any smooth scheme X/k, is a MW-homotopy sheaf canonically isomorphic
to M as presheaves.

In Section 4, we recall the construction of the Bass-Tate transfer maps on
a contracted homotopy sheaf M−1 and prove that this defines a structure of
generalized transfers:

Theorem 2 (see Theorem 4.1.21). Let M ∈ HI(k) be a homotopy sheaf.
Then:

1. Assume that 2 is invertible. The rational contracted homotopy sheaf
M−1,Q is a homotopy sheaf with generalized transfers.

2. Assuming Conjecture 4.1.13, the contracted homotopy sheaf M−1 is a
homotopy sheaf with generalized transfers.

In particular, we obtain the following intersection multiplicity formula which
was left open in Feld (2020a):

Theorem 3 (see Theorem 4.1.16). Let M ∈ HI(k) be a homotopy sheaf.
Consider morphisms of fields over k, ϕ : E → F and ψ : E → L with ϕ
finite. Let R be the ring F ⊗E L. For each p ∈ SpecR, let ϕp : L→ R/p and
ψp : F → R/p be the morphisms induced by ϕ and ψ. One has

M−1(ψ) ◦ Trϕ =
∑

p∈SpecR

ep,ε Trϕp ◦M−1(ψp)

where ep,ε =
∑ep

i=1〈−1〉i−1 is the quadratic form associated to the length ep of
the localized ring R(p).

Calmès and Fasel, generalizing ideas of Voevodsky, introduced the addi-
tive symmetric monoidal category C̃ork of smooth k-schemes with morphisms
given by the so-called finite Milnor-Witt correspondences (see (Bachmann
et al., 2020, Chapter 2)). In Section 5, we recall the basic definitions regard-
ing this theory and prove that any homotopy sheaf with MW-transfers has a
structure of a sheaf with generalized transfers. More precisely, we show that
the two notions coincide:
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Theorem 4 (Theorem 5.2.5). There is a pair of functors

HIMW(k)
Γ̃∗ //

HIgtr(k)
Γ̃∗

oo

that forms an equivalence between the category of homotopy sheaves with
MW-transfers and the category of homotopy sheaves with generalized trans-
fers.

In Section 6, we prove the following theorem that characterizes the essential
image of the functor γ̃∗ : HIMW(k)→ HI(k) that forgets MW-transfers.

Theorem 5 (Theorem 6.1.6). Let M ∈ HI(k) be a homotopy sheaf. The
following assertions are equivalent:

(i) There exists M ′ ∈ HI(k) satisfying Conjecture 4.1.13 and such that
M 'M ′

−1.

(ii) There exists a structure of generalized transfers on M .

(iii) There exists a structure of MW-transfers on M .

(iv) There exists M ′′ ∈ HI(k) such that M 'M ′′
−2.

This result is linked with the conservativity conjecture from Bachmann
and Yakerson (2020) and allows us to prove the following theorems.

Theorem 6 (Corollary 6.2.3). Let d > 0 be a natural number. The Bachmann-
Yakerson conjecture holds (integrally) for d = 2 and rationally for d = 1:
namely, the canonical functor

SHS1

(k)(2)→ SH(k)

is conservative on bounded below objects1, the canonical functor

SHS1

(k)(1)→ SH(k)

is conservative on rational bounded below objects, and the canonical functor

1Also known as connective objects.
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HI(k,Q)(1)→ HIfr(k,Q)

is an equivalence of abelian categories.
Moreover, let X be a pointed motivic space. Then the canonical map

π0Ωd
P1Σd

P1X → π0Ωd+1
P1 Σd+1

P1 X

is an isomorphism for d ≥ 2.

In conclusion, we note that the several notions generalizing Voevodsky’s
theory of homotopy sheaves with transfers are all equivalent:

Theorem 7 (Corollary 6.2.4). The category of homotopy sheaves with gen-
eralized transfers, the category of MW-homotopy sheaves and the category of
homotopy sheaves with framed transfers are equivalent:

HIgtr(k) ' HIMW(k) ' HIfr(k).

In future work, we will apply the conservative conjecture of Bachmann
and Yakerson to study some intersection points between A1-homotopy theory
and affine algebraic geometry. For instance, following (Asok and Østvær,
2019, Conjecture 5.3.11 and Remark 5.3.12), one should obtain:

Theorem 8. Let X be a smooth scheme and x ∈ X a closed point. If
Σ∞P1(X, x) ' ∗ in SH(k), then Σ2

P1(X, x) is A1-contractible.

In particular, this applies when X is a Koras-Russel threefold of the first or
second kind (see (Asok and Østvær, 2019, Theorem 5.3.9) and Dubouloz and
Fasel (2018); Hoyois et al. (2015) for similar results).

1.2. Outline of the paper
In Section 2, we recall the theory of unramified sheaves and how they are

related to homotopy sheaves of abelian groups.
In Section 3, we define the notion of sheaves with generalized transfers

and study the associated Rost-Schmid complex.
In Section 4, we define the Bass-Tate transfer maps on a contracted ho-

motopy sheaf M−1 and prove the conjecture of Morel in the case of rational
coefficients.

In Section 5, we recall the theory of sheaves with MW-transfers Bachmann
et al. (2020) and prove that it is equivalent to the notion of sheaves with
generalized transfers.

5



In Section 6, we give some corollaries of Theorem 5.2.5. In particular,
we characterize the essential image of the functor γ̃∗ : HIMW(k)→ HI(k)
that forgets MW-transfers and use the previous results to discuss the con-
servativity conjecture in A1-homotopy due to Bachmann and Yakerson (see
(Bachmann and Yakerson, 2020, Conjecture 1.1) and Bachmann (2020)).

Notation
Throughout the paper, we fix a (commutative) field k and we assume

moreover that k is infinite perfect of characteristic not 2. We need these
assumptions in order to apply the cancellation theorem (Bachmann et al.,
2020, Chapter 4) but we believe these restrictions could be lifted.

We denote by Grp and Ab the categories of (abelian) groups.
We consider only schemes that are essentially of finite type over k. All

schemes and morphisms of schemes are defined over k. The category of
smooth k-schemes of finite type is denoted by Smk and is endowed with
the Nisnevich topology (thus, sheaf always means sheaf for the Nisnevich
topology).

Let X be a scheme and x a point of X. We define the codimension of x in
X to be dim(OX,x), the dimension of the localisation ring of x in X (see also
(Stacks Project Authors, 2018, TAG 02IZ)). If n a natural number, we denote
by X(n) (resp. X(n)) the set of point of dimension n (resp. codimension n)
of X (this makes sense even if X is not smooth).

By a field E over k, we mean a k-finitely generated field E. Since k is
perfect, notice that SpecE is essentially smooth over S. We denote by Fk
the category of such fields.

Let f : X → Y be a (quasi)projective lci morphism of schemes (e.g. a
morphism between smooth schemes). Denote by Lf (or LX/Y ) the virtual
vector bundle over Y associated with the cotangent complex of f defined as
follows: if p : X → Y is a smooth morphism, then Lp is (isomorphic to) ΩX/Y

the space of (Kähler) differentials. If i : Z → X is a regular closed immersion,
then Li is the normal cone −NZX. If f is the composite Y i // PnX

p
// X

with p and i as previously (in other words, if f is lci projective), then Lf is
isomorphic to the virtual tangent bundle i∗ΩPnX/X −NY (PnX) (see also (Feld,
2020a, Section 9)). Denote by ωf (or ωX/Y ) the determinant of Lf .

Let X be a scheme and x ∈ X a point, we denote by Lx = (mx/m
2
x)
∨ and

ωx/X = ωx its determinant. Similarly, let v a discrete valuation on a field,
we denote by ωv the line bundle (mv/m

2
v)
∨.
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Let E be a field (over k) and v a valuation on E. We will always assume
that v is discrete. We denote byOv its valuation ring, by mv its maximal ideal
and by κ(v) its residue class field. We consider only valuations of geometric
type, that is we assume: k ⊂ Ov, the residue field κ(v) is finitely generated
over k and satisfies tr. degk(κ(v)) + 1 = tr. degk(E).

Let E be a field. We denote by GW(E) the Grothendieck-Witt ring of
symmetric bilinear forms on E. For any a ∈ E∗, we denote by 〈a〉 the class
of the symmetric bilinear form on E defined by (X, Y ) 7→ aXY and, for any
natural number n, we put nε =

∑n
i=1〈−1〉i−1. Recall that, if n and m are

two natural numbers, then (nm)ε = nεmε.
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2. Homotopy sheaves

2.1. Unramified sheaves
In this subsection, we summarize (Morel, 2012, Chapter 2) and recall the

basic results concerning unramified sheaves.

Definition 2.1.1. 1. A sheaf of sets S on Smk is said to be A1-invariant
if for any X ∈ Smk, the map

S(X)→ S(A1
X)

induced by the projection A1 ×X → X, is a bijection.

2. A sheaf of groups G on Smk is said to be strongly A1-invariant if, for
any X ∈ Smk, the map

H i
Nis(X,G)→ H i

Nis(A1 ×X,G)

induced by the projection A1 ×X → X, is a bijection for i ∈ {0, 1}.
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3. A sheaf of abelian groups M on Smk is said to be strictly A1-invariant
if, for any X ∈ Smk, the map

H i
Nis(X,M)→ H i

Nis(A1 ×X,M)

induced by the projection A1 ×X → X, is a bijection for i ∈ N.

Remark 2.1.2. In the sequel, we work with M a sheaf of groups. We could
give more general definitions for sheaves of sets but, in practice, we need only
the case of sheaves of abelian groups. In that case, we recall that a strongly
A1-invariant sheaf of abelian groups is necessarily strictly A1-invariant (see
(Morel, 2012, Corollary 5.46)).

Definition 2.1.3. An unramified presheaf of groupsM on Smk is a presheaf
of groups M such that the following holds:

(0) For any smooth scheme X ∈ Smk with irreducible components Xα (α ∈
X(0)), the canonical map M(X)→

∏
α∈X(0) M(Xα) is an isomorphism.

(1) For any smooth scheme X ∈ Smk and any open subscheme U ⊂ X
everywhere dense inX, the restriction mapM(X)→M(U) is injective.

(2) For any smooth scheme X ∈ Smk, irreducible with function field F , the
injective map

M(X)→
⋂
x∈X(1) M(OX,x)

is an isomorphism (the intersection being computed in M(F )).

Example 2.1.4. Homotopy modules with transfers Déglise (2011) and Rost
cycle modules Rost (1996) define unramified sheaves. In characteristic not 2,
the sheaf associated to the presheaf of Witt groupsX → W (X) is unramified.

We may give an explicit description of unramified sheaves on Smk in terms
of their sections on fields F ∈ Fk and some extra structure. We will say that
a functor M : Fk → Grp is continuous if M(F ) is the filtering colimit of the
groups M(Fα) where Fα runs over the subfields of F of finite type over k.

Definition 2.1.5 (Morel (2012),Definition 2.6). An unramified Fk-datum
consists of:
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uD1 A continuous functor M : Fk → Grp.

uD2 For any field F ∈ Fk and any discrete valuation v on F , a subgroup

M(Ov) ⊂M(F ).

uD3 For any field F ∈ Fk and any valuation v on F , a map

sv : M(Ov)→M(κ(v)),

called the specialization map associated to v.

The previous data should satisfy the following axioms:

uA1 If ι : E ⊂ F is a separable extension in Fk and w is a valuation
on F which restrict to a discrete valuation v on E with ramification
index 1, then the arrow M(ι) maps M(Ov) into M(Ow). Moreover,
if the induced extension ῑ : κ(v) → κ(w) is an isomorphism, then the
following square

M(Ov) //

��

M(Ow)

��

M(E) //M(F )

is cartesian.

uA2 Let X ∈ Smk be an irreducible smooth scheme with function field F .
If x ∈ M(F ), then x lies in all but a finite number of M(Ox) where x
runs over the set X(1) of points of codimension 1.

uA3(i) If ι : E ⊂ F is an extension in Fk and w is a discrete valuation on F
which restricts to a discrete valuation v on F , then M(ι) maps M(Ov)
into M(Ow) and the following diagram

M(Ov) //

��

M(Ow)

��

M(κ(v)) //M(κ(w))
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is commutative.

uA3(ii) If ι : E ⊂ F is an extension in Fk and w a discrete valuation on F
which restricts to zero on E, then the map

M(ι) : M(E)→M(F )

has its image contained in M(Ov). Moreover, if ῑ : E ⊂ κ(w) denotes
the induced extension, the composition

M(E) //M(Ov)
sv //M(κ(w))

is equal to M(ῑ).

uA4(i) For any smooth scheme X ∈ Smk local of dimension 2 with closed
point z ∈ X(2), and for any point y0 ∈ X(1) such that the reduced
closed scheme ȳ0 is k-smooth, then

sy0 : M(Oy0)→M(κ(y0))

maps ∩y∈X(1)M(Oy) into M(Oȳ0,z) ⊂M(κ(y0)).

uA4(ii) The composition⋂
y∈X(1) M(Oy)→M(Oȳ0,z)→M(κ(z))

does not depend on the choice of y0 such that ȳ0 ∈ Smk.

Example 2.1.6. For any integer n, the functorKMW : Fk → Grp of Milnor-
Witt K-theory (defined in (Morel, 2012, Chapter 3) and (Feld, 2020a, Section
1)) is an unramified Fk-datum.

2.1.7. An unramified sheaf M defines in an obvious way an unramified Fk-
datum. Indeed, taking the evaluation2 on the field extensions of k yields a
restriction functor:

M : Fk → Grp, F 7→M(F )

2See the proof of (Morel, 2012, Proposition 2.8) for more details.
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such that, for any field F with valuation v, we have an M(Ov) ⊂M(F ) and
a specialization map sv : M(Ov) → M(κ(v)) (obtained by choosing smooth
models over k for the closed immersion Specκ(v)→ SpecOv). We claim that
this satisfies axioms uA1, . . . , uA4(ii).

Reciprocally, given an unramified Fk-datum M and X ∈ Smk an irre-
ducible smooth scheme with function field F , we define the subset M(X) ⊂
M(F ) as the intersection

⋂
x∈X(1) M(Ox) ⊂M(F ). We extend the definition

for any X so that property (0) is satisfied. Using the fact that any map
f : Y → X between smooth schemes is the composition

Y �
�

// Y ×k X // // X

of closed immersion followed by a smooth projection, one can define an un-
ramified sheaf M : Smk → Grp. In short, we have the following theorem.

Theorem 2.1.8 (Morel (2012), Theorem 2.11). The two functors de-
scribed above define an equivalence between the category of unramified sheaves
on Smk and that of unramified Fk-data.

Example 2.1.9. Combining Example 2.1.6 and the previous theorem 2.1.8,
we obtain a definition of the (unramified) sheaf of Milnor-Witt K-theory
KMW
n for any integer n.

2.1.10. From now on, we will not distinguish between the notion of unram-
ified sheaves on Smk and that of unramified Fk-datum. In the remaining
subsection, we fix M an unramified sheaf of groups on Smk and explain how
it is related to strongly A1-invariant sheaves.

2.1.11. Notation. If ϕ : E → F is an extension of fields, the map from
uD1

M(ϕ) : M(E)→M(F )

is also denoted by resϕ, resF/E or ϕ∗.

2.1.12. Let F ∈ Fk be a field and v a valuation on F . We define the pointed
set

H1
v (Ov,M) = M(F )/M(Ov).
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This is a left M(F )-set. Moreover, for any point y of codimension 1 in X ∈
Smk, we set H1

y (X,M) = H1
y (OX,y,M). By axiom uA2, if X is irreducible

with function field F , the induced left action of M(F ) on
∏

y∈X(1) H1
y (X,M)

preserves the weak-product∏′
y∈X(1) H1

y (X,M) ⊂
∏

y∈X(1) H1
y (X,M)

where the weak-product
∏′

y∈X(1) H1
y (X,M) means the set of families for

which all but a finite number of terms are the base point of H1
y (X,M).

By definition and axiom uA2, the isotropy subgroup of this action of M(F )
on the base point of

∏′
y∈X(1) H1

y (X,M) is exactly M(X) = ∩y∈X(1)M(OX,y).
We summarize this property by saying that the diagram

1→M(X)→M(F )⇒
∏′

y∈X(1) H1
y (X,M)

is exact.

Definition 2.1.13. For any point z of codimension 2 in a smooth scheme
X, we denote by H2

z (X,M) the orbit set of
∏′

y∈X(1)
(z)

H1
y (X,M) under the left

action of M(F ) where F ∈ Fk is the function field of X(z).

2.1.14. For an irreducible essentially smooth scheme X with function field
F , we define the boundary M(F )-equivariant map∏′

y∈X(1) H1
y (X,M)→

∏
z∈X(2) H2

z (X,M)

by collecting together the compositions∏′
y∈X(1) H1

y (X,M)→
∏′

y∈X(1)
(z)

H1
y (X,M)→ H2

z (X,M)

for each z ∈ X(2).
It is not clear in general whether or not the image of the boundary map

is always contained in the weak product
∏′

z∈X(2) H2
z (X,M). For this reason

Morel introduces the following axiom:

uA2’ For any irreducible essentially smooth scheme X, the image of the
boundary map∏′

y∈X(1) H1
y (X,M)→

∏
z∈X(2) H2

z (X,M)

is contained in the weak product
∏′

z∈X(2) H2
z (X,M).
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2.1.15. From now on we assume that M satisfies uA2’. For any smooth
scheme X irreducible with function field F , we have a complex C∗(X,M)

1→M(X)→M (0)(X)⇒M (1)(X)→M (2)(X)

where

M (0)(X) =
∏′

x∈X(0) M(κ(x)) =
∏

x∈X(0) M(κ(x)),

M (1)(X) =
∏′

y∈X(1) H1
y (X,M)

and

M (2)(X) =
∏′

z∈X(2) H2
z (X,M).

By construction, this complex is exact (in an obvious sense, see (Morel, 2012,
Definition 2.20)) for any (essentially) smooth local scheme of dimension ≤ 2.

Definition 2.1.16. A strongly unramified Fk-data is an unramified Fk-data
M satisfying uA2’ and the following axioms:

uA5(i) For any separable finite extension ι : E ⊂ F in Fk, any discrete
valuation w on F which restricts to a discrete valuation v on E with
ramification index 1, and such that the induced extension ῑ : κ(v) →
κ(w) is an isomorphism, the commutative square of groups

M(Ov) //

��

M(E)

��

M(Ow) //M(F )

induces a bijection H1
w(Ow,M) ' H1

v (Ov,M).

uA5(ii) For any étale morphism X ′ → X between smooth local k-schemes
of dimension 2, with closed point respectively z′ and z, inducing an
isomorphism on the residue fields κ(z) ' κ(z′), the pointed map

H2
z (X,M)→ H2

z′(X
′,M)

has trivial kernel.
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uA6 For any localization U of a smooth k-scheme at some point u of codi-
mension ≤ 1, the complex:

1→M(A1
U)→M (0)(A1

U)⇒M (1)(A1
U)→M (2)(A1

U)

is exact. Moreover, the morphismM(U)→M(A1
U) is an isomorphism.

Theorem 2.1.17 (Morel (2012), Theorem 2.27). There is an equivalence
between the category of strongly A1-invariant sheaves of groups on Smk and
that of strongly unramified Fk-data of groups on Smk.

Definition 2.1.18. A strongly A1-invariant Nisnevich sheaf of abelian groups
is called a homotopy sheaf. We denote by HI(k) the category of homotopy
sheaves and natural transformations of sheaves.

Example 2.1.19. As a corollary of the previous theorem, we obtain that
the sheaf of Milnor-Witt K-theory KMW

n is a homotopy sheaf for any integer
n.

2.1.20. Monoidal structure. Recall that there is a canonical adjunc-
tion of categories

D(Sh(Smk))
πA1
//
Deff

A1(k)
O
oo

where Deff
A1(k) the effective A1-derived category and D(Sh(Smk)) is the de-

rived category of complexes of sheaves over Smk (see (Cisinski and Déglise,
2019, §5)). Thanks to Morel’s A1-localization theorem, we can prove that
there is a unique t-structure on Deff

A1(k) such that the forgetful functor O is
t-exact and that the category of homotopy sheaves HI(k) is equivalent to the
heart (Deff

A1(k))♥ for this t-structure (in particular, HI(k) is a Grothendieck
category). Since the canonical tensor product ⊗Deff

A1
is right t-exact, it in-

duces a monoidal structure on HI(k). Precisely, if F,G ∈ HI(k) are two
homotopy sheaves, then their tensor product is

F ⊗HI G = HA1

0 (F ⊗Deff
A1
G)

where HA1

0 is the homology object in degree 0 for the homotopy t-structure.

Example 2.1.21. For any integers n and m, we have a canonical morphism

KMW
n ⊗HI K

MW
m → KMW

n+m.

In particular GW = KMW
0 is a commutative monoid.

14



2.2. Contracted homotopy sheaves
2.2.1. In this section, we fix M ∈ HI(k) a homotopy sheaf. Recall that the
contraction M−1 is by definition the sheaf of abelian groups

X 7→ ker(M(Gm ×X)→M(X)).

According to (Morel, 2012, Lemma 2.32), the sheaf M−1 is also a homotopy
sheaf and is called a contracted homotopy sheaf. Morel also proved that we
have

M−1 = Hom(KMW
1 ,M)

where Hom is the internal hom-object of the abelian category of sheaves of
abelian groups over Smk.

Example 2.2.2. For any integer n, we have a canonical isomorphism

(KMW
n )−1 = KMW

n−1

according to (Morel, 2012, Corollary 6.43).

2.2.3. For any smooth scheme X, we have a short exact sequence

0→M(X)→M(Gm ×X)→M−1(X)→ 0.

Following (Morel, 2012, §3.3), we letO(X)× act onM(Gm×X) by translation
through the map (u, x) 7→ U∗(x) where U : Gm × X ' Gm × X is the
automorphism multiplication by the unit u ∈ O(X)×. If we let O(X)× act
trivially on M(X), then the above left inclusion is equivariant and thus M−1

gets a canonical and functorial structure of Gm-module.
According (Morel, 2012, Lemma 3.49), the Gm-module structure on M−1

is induced from a (GW = KMW
0 )-module structure on M−1 through the

morphism of sheaves Gm → KMW
0 that maps a unit u to its symbol 〈u〉 =

1 + η[u].
Moreover, we have a bilinear pairing

KMW
1 ×M−1 →M

([u], µ) 7→ [u] · µ,

where KMW
1 is defined in 2.1.19 (see also (Morel, 2012, Lemma 3.48)).
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2.2.4. LetN ∈ HI(k) be another homotopy sheaf and assumeN is equipped
with a GW-module structure. Let X ∈ Smk be a smooth scheme and L a
line bundle on X. We define the twist of N by L denoted by N{L} or
N ⊗Z[Gm] Z[L×] as the sheaf associated to the presheaf on the Zariski site
XZar:

U 7→ N(U)⊗Z[OX(U)×] Z[L×U ]

where L×U is the set of isomorphisms between OU and LU (which may be
empty). We put N(X,L) = Γ(X,N{L}). We extend the definition to any
essentially smooth scheme X/k. If X = Spec(F ) is the spectrum of a field,
then the line bundle L corresponds to an invertible F -vector space, and we
have N(X,L) = N(X)⊗Z[OX(X)×]Z[L×X ]. In particular, this definition applies
to the sheaf N = M−1.

2.2.5. Cohomology with support exact sequence. LetM ∈ HI(k)
be a homotopy sheaf. For any closed immersion i : Z → X of smooth
schemes over k, with complementary open immersion j : U → X, there
exists a canonical cohomology with support exact sequence of the form:

ΓZ(X,M)
i∗ //M(X)

j∗
//M(U) ∂ // H1

Z(X,M) // . . .

2.2.6. Recall that, by convention, we implicitly extend our sheaves to the
category of essentially smooth schemes in a canonical way. The purity iso-
morphism (more precisely: Axiom uA5(i) and (Morel, 2012, Lemma 3.50))
implies that for any discrete valuation v on a field F ∈ Fk, one has a canonical
bijection

H1
v (Ov,M) 'M−1(κ(v), ωv)

and thus obtain a residue map

∂v : M(F )→M−1(κ(v), ωv).

Proposition 2.2.7. Let M ∈ HI(k) be a homotopy sheaf and consider the
following commutative square

T �
� k //� _

q
��

Y � _
p
��

Z �
�

i
// X
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of closed immersions of separated schemes over k. We have the following
diagram

ΓT (X,M)
k∗ //

q∗

��

ΓY (X,M) k′∗ ////

p∗

��

ΓY−T (X − Z,M)
∂k //

p̃∗
��

H1
T (X,M)

q∗
��

ΓZ(X,M)
i∗ //

q′∗

��

M(X) i′∗ //

p′∗

��

M(X − Z)

p̃′∗

��

∂i // H1
Z(X,M)

q′∗

��

ΓZ−T (X − Y,M)
ĩ∗ //

∂k
��

M(X − Y ) ĩ′∗ //

∂p
��

M(X − (Y ∪ Z))

(∗)∂p̃
��

∂ĩ // H1
Z−T (X − T,M)

∂k̃
��

H1
T (X,M)

k∗
// H1

Y (X,M)
k′∗
// H1

Y−T (X − Z,M)
∂k
// H2

T (X,M)

with obvious maps. Each squares of this diagram is commutative except for
(∗) which is anti-commutative.

Proof. This is a classical consequence of the octahedron axiom.

3. Sheaves with generalized transfers

3.1. Morel’s axioms
The following definition is a slightly improved version of Morel’s definition

in (Morel, 2011, Definition 5.7). The main purpose is to give an axiomati-
zation of the Bass-Tate transfers defined in Section 4. It is directly inspired
by Rost’s theory of cycles modules. Lastly, it can be seen as an effective
counter-part of our own axiomatic of MW-cycle modules (see Feld (2020a)).

Definition 3.1.1. Let M be a homotopy sheaf (i.e. a strongly A1-invariant
Nisnevich sheaf of abelian groups on Smk). We say that M has a structure
of generalized transfers if M has a structure of GW-module and satisfies the
following datum

eD2 For any finite extension ϕ : E → F in Fk and any natural number
i ∈ N, there is a map

Trϕ = TrF/E : M−i(F, ωF/k)→M−i(E,ωE/k)

called the transfer morphism from F to E.
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In addition, this datum satisfies the following axioms:

eR1b TrIdE = IdM(E) and for any composable finite morphisms ϕ and ψ in
Fk, we have

Trψ◦ϕ = Trϕ ◦Trψ.

eR1c Consider ϕ : E → F and ψ : E → L with ϕ finite. Let R be the ring
F ⊗E L. For each p ∈ SpecR, let ϕp : L→ R/p and ψp : F → R/p be
the morphisms induced by ϕ and ψ. One has

M(ψ) ◦ Trϕ =
∑

p∈SpecR

ep,ε Trϕp ◦M(ψp)

where ep,ε =
∑ep

i=1〈−1〉i−1 is the quadratic form associated to the length
ep of the local Artinian ring R(p).

eR2 Let ψ : E → F be a finite extension of fields.

eR2b For 〈a〉 ∈ GW(E) and µ ∈ M(F, ωF/k), one has TrF/E
(
〈ψ(a)〉 · µ

)
=

〈a〉 · TrF/E(µ).

eR2c For 〈a〉 ∈ GW(F, ωF/k) and µ ∈M(E), one has TrF/E
(
〈a〉·resF/E(µ)

)
=

TrF/E(〈a〉) · µ.

eR3b Let i ∈ N be a natural number, ϕ : E → F be a finite extension of
fields and let v be a valuation on E. For each extension w of v, we
denote by ϕw : κ(v)→ κ(w) the induced morphism. We have

∂v ◦ Trϕ =
∑

w Trϕw ◦∂w

where ∂v : M−i(E,ωE/k)→M−i−1(κ(v), ωκ(v)/k) and ∂w : M−i(F, ωF/k)→
M−i−1(κ(w), ωκ(w)/k) are the residue maps defined in 2.2.6.

Remark 3.1.2. Our definition differs from Morel’s in two ways. First, we
have taken into account the twists naturally arising (this is not really im-
portant if one works in characteristic zero). Second, Axiom A3 of (Morel,
2011, Definition 5.7) is replaced by eR3b (we expect these two axioms to be
equivalent in characteristic 0).

18



Remark 3.1.3. We know from 2.1.17 that homotopy sheaves can be under-
stood as certain functors on function fields. Taking into account this fact, our
axioms are indeed effective variants of that of Milnor-Witt cycle modules. In
fact, we will see that they correspond to homotopy sheaves with Milnor-Witt
transfers, as MW-cycle modules correspond to homotopy modules. (This
explains our choice of numbering of the axioms.)

Remark 3.1.4. A homotopy sheaf with generalized transfers is a particular
case of a sheaf with A1-transfers as defined in (Bachmann and Yakerson,
2020, §5).

Example 3.1.5. 1. The Milnor-Witt sheaf KMW
n has a structure of gen-

eralized transfers ((Morel, 2012, §4.2), (Feld, 2020a, Theorem 4.13), or
(Feld, 2020b, Theorem 1); see also Theorem 4.1.16).

2. Let M be a homotopy sheaf with generalized transfers, F/E a finite
extension of fields and LE a line vector space over E. Then we put
LF = LE ⊗E F which is F -vector space of rank 1. For any natural
number n, then transfer maps TrF/E of M define morphisms

M−i(F, ωF/k ⊗F LF )→M−i(E,ωE/k ⊗E LE)

which satisfies axioms eR1b, . . . , eR3b. An abuse of language would
be to say that if M has a structure of generalized transfers, then so
does M{L}.

3. If M is a homotopy sheaf with generalized transfers, then so is M−1.

Remark 3.1.6. In the next section, we will give conditions for a contracted
homotopy sheafM−1 to be equipped with a structure of generalized transfers.

Definition 3.1.7. Amap between homotopy sheaves with generalized trans-
fers is a natural transformation commuting with the GW -module structure
and the transfers. We denote by HIgtr(k) the category of homotopy sheaves
with generalized transfers over k.

3.1.8. Rost-Schmid complex. Let M ∈ HIgtr(k) and let X be a scheme
essentially of finite type over k. We define the Rost-Schmid complex as the
graded abelian group defined for any n ∈ N by:
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Cn(X,M) =
⊕

x∈X(n) M−n(κ(x), ωκ(x)/X).

The transition maps d are defined as follows. If X is normal with generic
point ξ, then for any x ∈ X(1) the local ring of X at x is a valuation ring so
that we have a map ∂x : M−n(κ(ξ), ωκ(ξ)/k) → M−n−1(κ(x), ωκ(x)/k) for any
n.

Now suppose X is a scheme essentially of finite type over k and let x, y
be two points in X. We define a map

∂xy : M−n(κ(x), ωκ(x)/X)→M−n−1(κ(y), ωκ(y)/X)

as follows. Let Z = {x}. If y 6∈ Z(1), then put ∂xy = 0. If y ∈ Z(1), let Z̃ → Z
be the normalization and put

∂xy =
∑
z|y

Trκ(z)/κ(y) ◦ ∂z

with z running through the finitely many points of Z̃ lying over y.
Thus, we may define a differential map

d =
∑

x,y ∂
x
y : Cn(X,M)→ Cn+1(X,M)

which is well-defined according to the following proposition.

Remark 3.1.9. IfM ∈ HI(k) is a homotopy sheaf, Morel defined in (Morel,
2012, Chapter 4) a complex (also called the Rost-Schmid complex ) denoted by
C∗RS(X,M) (where X is a smooth scheme). If M ∈ HIgtr(k) has generalized
transfers, then we have an isomorphism

Cn(X,M) ' Cn
RS(X,M) (3.1.1)

for any smooth scheme X and any n ∈ N.
For now, the above map 3.1.1 is just an isomorphism of abelian groups;

but we will see later that it is moreover compatible with the differentials, i.e.
we have an isomorphism of complexes. Indeed, the differentials of C∗(X,M)
and C∗RS(X,M) are defined exactly in the same manner except for the fact
that Morel uses transfer maps that arise automatically on contractions (see
Section 4) while ours are given as extra data. In Theorem 4.2.3, we prove
that these two types of transfers are equivalent (in other words, our definition
of generalized transfers is a good axiomatization of the transfers defined in
(Morel, 2012, Chapter 4)).
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We now define the analogue of Rost’s four basic maps (Rost, 1996, §3)
for the Rost-Schmid complex and prove that they are morphisms of quasi-
complexes in some special cases.

3.1.10. Notation Let M and N be two homotopy sheaves which are also
GW-modules, X and Y two smooth schemes, LX and LY two line bundle
over X and Y respectively, U ⊂ X and V ⊂ Y two subsets, and a morphism

α :
⊕

x∈U M(κ(x), (LX)x)→
⊕

y∈V N(κ(y), (LY )y).

Then we denote by αxy : M(κ(x), (LX)x) → N(κ(y), (LY )y) the components
of α.

3.1.11. Pullback. Let M ∈ HIgtr(k). Let f : X → Y be an essentially
smooth morphism of schemes essentially of finite type. Define

f ∗ : C∗(Y,M)→ C∗(X,M)

as follows. If x ∈ X and y ∈ Y satisfy f(x) = y, then (f ∗)yx = Θ ◦ resκ(x)/κ(y),
where Θ is the canonical isomorphism induced by ωSpecκ(x)/Specκ(y) ' ωX/Y×X
Specκ(x). Otherwise, (f ∗)yx = 0. If X is not connected, take the sum over
each connected component.

3.1.12. Pushforward. LetM ∈ HIgtr(k). Let f : X → Y be a morphism
between schemes essentially of finite type over k and assume that X is con-
nected (if X is not connected, take the sum over each connected component).
Let d = dim(Y )− dim(X). We define

f∗ : C∗(X,M{ωf})→ C∗−d(Y,M−d)

as follows. If x ∈ X and y ∈ Y satisfies y = f(x) and κ(x) is finite over
κ(y), then put (f∗)

y
x = Trκ(x)/κ(y) where Trκ(x)/κ(y) is the transfer map eD2.

Otherwise, put (f∗)
y
x = 0.

3.1.13. GW-action. Let M ∈ HIgtr(k). Let X be a scheme essentially of
finite type over k and a ∈ O∗X a global unit. Define a morphism

〈a〉 : C∗(X,M)→ C∗(X,M)

as follows. Let x, y ∈ X(p) and ρ ∈M−∗(κ(x), ωx/k). If x = y, then 〈a〉yx(ρ) =
〈a(x)〉 · ρ. Otherwise, 〈a〉yx(ρ) = 0.
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3.1.14. Boundary maps. Let M ∈ HIgtr(k). Let X be a scheme essen-
tially of finite type over k, let i : Z → X be a closed immersion and let
j : U = X \ Z → X be the inclusion of the open complement. We will refer
to (Z, i,X, j, U) as a boundary triple and define

∂ = ∂UZ : Cp(U,M)→ Cp−1(Z,M)

by taking ∂xy to be as the definition in 3.1.8 with respect to X. The map
∂UZ is called the boundary map associated to the boundary triple, or just the
boundary map for the closed immersion i : Z → X.

We now fixM ∈ HIgtr(k) a homotopy sheaf with generalized transfers and
study the morphisms defined on the Rost-Schmid complex with coefficients
in M .

Proposition 3.1.15 (Functoriality and base change). 1. Let f : X →
Y and f ′ : Y → Z be two morphisms of schemes essentially of finite
type. Then

(f ′ ◦ f)∗ = f ′∗ ◦ f∗.

2. Let g : Y → X and g′ : Z → Y be two essentially smooth mor-
phisms. Then (up to the canonical isomorphism given by ωZ/X '
ωZ/Y + (g′)∗ωY/Z):

(g ◦ g′)∗ = g′∗ ◦ g∗.

3. Consider a pullback square

U
g′
//

f ′

��

Z

f
��

Y g
// X

with f, f ′, g, g′ as previously. Then

g∗ ◦ f∗ = f ′∗ ◦ g′∗

up to the canonical isomorphism induced by ωU/Z ' ωY/X ×Y U .
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Proof. This follows as in (Feld, 2020a, Proposition 6.1) from eR1b and
eR1c.

Proposition 3.1.16. (i) Let f : X → Y be a finite morphism of schemes
essentially of finite type. Then

dY ◦ f∗ = f∗ ◦ dX .

(ii) Let g : Y → X be an essentially smooth morphism. Then

g∗ ◦ dX = dY ◦ g∗.

(iii) Let a be a unit on X. Then

dX ◦ 〈a〉 = 〈a〉 ◦ dX

(iv) Let (Z, i,X, j, U) be a boundary triple. Then

dZ ◦ ∂UZ = −∂UZ ◦ dU .

Proof. As in (Feld, 2020a, Proposition 6.6), the assertions (ii), (iii) and
(iv) follow easily from the definitions.

The assertion (i) is nontrivial since our axioms are weaker than in the
stable case studied in (Feld, 2020a, §6). Fortunately, Morel proved that the
map

g∗ : C∗(Y,N−1)→ C∗(X,N−1)

is a morphism of (quasi)complexes when N is a homotopy sheaf (see (Morel,
2012, Corollary 5.30))3. The proof can be adapted almost verbatim if we
replace the contracted homotopy sheaf N−1 by any sheaf with generalized
transfers M (the use of (Morel, 2012, Theorem 5.19) is replaced by eR3b).
We give more details below.

First of all, we may reduce (as in (Morel, 2012, Corollary 5.30)) to the
case where X = Spec(B) and Y = Spec(A), with A and B being essentially
k-smooth of dimension 1.

3Beware that some results in (Morel, 2012, Chapter 4) may contain typographical
mistakes.
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Denote by K and L the fraction fields of A and B, respectively. Let
K ⊂ E ⊂ L an intermediate (finite) extension of fields and C the integral
closure of A in E. By the functorial property eR1b of the generalized trans-
fers, we see that, if the assertion (i) holds for Spec(B) → Spec(C) and for
Spec(C)→ Spec(A), then it holds for the composition Spec(B)→ Spec(A).
We emphasize the need of the axiom eR1b which corresponds to Conjecture
4.1.13 in (Morel, 2012, Chapter 4) where Morel works with general homotopy
sheaves (without transfers).

We may now conclude as in the proof of (Morel, 2012, Theorem 5.26) but
let us explain the proof in characteristic 0. To check the assertion, we may
moreover assume that A is an henselian essentially k-smooth d.v.r. (in that
case, B is also an henselian essentially k-smooth d.v.r.). According to (Morel,
2012, Remark 5.28), there exists a finite filtration K ⊂ L1 ⊂ · · · ⊂ Lr = L
such that letting Bi ⊂ Li be the integral closure (which is also an henselian
d.v.r.) each extension Bi−1 ⊂ Bi is monogenous. One can then apply axiom
eR3b at each step to prove the result.

Theorem 3.1.17. For any homotopy sheaf with generalized transfers M ∈
HIgtr(k) and any essentially smooth scheme X, the Rost-Schmid complex
C∗(X,M) is a complex.

Proof. We follow the proof of Morel (see (Morel, 2012, Theorem 5.31)).
Let z ∈ X be a point of codimension n and let Y be an integral closed

subscheme of codimension n − 2 with generic point y. We want to prove
that the component of ∂ ◦ ∂ starting from the summand M−n+1(κ(y), ωy/X)
to M−n−1(κ(z), ωz/X) is zero. We may reduce to the case where X is of finite
type, affine and smooth over κ(z) and z is a closed point of codimension n in
X. By the Normalization lemma (Serre, 1965, Théorème 2 p.57), there exists
a finite morphism X → An

κ(z) such that z maps to 0 (with same residue field)
and such that the image of Y is a linear A2

κ(z) ⊂ An
κ(z). Using the pushforward

maps (see Proposition 3.1.16), we may reduce to the case X = An
κ(z), Y =

A2
κ(z) and z = 0. The proof of this last particular case is exactly the same as

(Morel, 2012, Corollary 5.29).

Definition 3.1.18. For any homotopy sheaf with generalized transfersM ∈
HIgtr(k) and any essentially smooth scheme X, the cohomology groups as-
sociated to the Rost-Schmid complex are denoted by A∗(X,M).
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Remark 3.1.19. According to Proposition 3.1.16, the morphisms f∗ for f
finite, g∗ for g essentially smooth, multiplication by 〈a〉 commute with the
differentials. We use the same notations to denote the induced morphisms
on the cohomology groups A∗(X,M).

3.1.20. Product By definition, if M ∈ HIgtr, then there is a structure of
KMW

0 -module on M (since GW ' KMW
0 ). As in (Rost, 1996, §14), (Fasel,

2020, §3.4) or (Feld, 2020a, §11), we can define, for any smooth k-schemes Z
and Y , and any numbers p, q, a product map

×µ : Cp(Y,KMW
p )× Cq(Z,M)→ Cp+q(Y × Z,M)

which induces a map on the cohomology groups:

×µ : Ap(Y,KMW
p )× Aq(Z,M)→ Ap+q(Y × Z,M).

3.2. MW-transfers structure
Definition 3.2.1. Let M ∈ HIgtr(k) be a homotopy sheaf with generalized
transfers. For any smooth scheme X, denote by

Γ̃∗(M)(X) = A0(X,M).

By definition, if X is integral with function field κ(X), then

A0(X,M) = ker d =
⋂
x∈X(1) ker ∂x ⊂M(κ(X)).

Thus we see that Γ̃∗(M)(X) is canonically isomorphic to M(X) (since M is
unramified, recall Definition 2.1.3, Theorem 2.1.8 and Theorem 2.1.17).

This defines a presheaf Γ̃∗(M) where the pullback morphisms are defined
to be the same as M .

Remark 3.2.2. The previous definition (along with Proposition 3.1.16) al-
lows us to consider pushforward maps on Γ̃∗(M) for finite morphisms.

Theorem 3.2.3. Let M ∈ HIgtr(k) be a homotopy sheaf with generalized
transfers. Then the contravariant functor Γ̃∗(M) : X 7→ Γ̃∗(M)(X) induces
a presheaf on C̃ork.
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Proof. Let X, Y be two smooth schemes (which may be assumed to be
connected without loss of generality). Let β be an element in Γ̃∗(M)(Y ). We
use the notations and definitions of Subsection 5.1, and fix α a finite corre-
spondence from X to Y with support in T , with T ⊂ X × Y an admissible
subset. We set α ·p∗Y (β) = δ∗X×Y (α×µp∗Y (β)) where ×µ is the product defined
in 3.1.20 and δX×Y : X×Y → (X×Y )× (X×Y ) is the diagonal morphism.
In order to define Milnor-Witt transfers, we put

α∗(β) = (pX)∗(α · p∗Y (β))

where pX : T → X is the canonical morphism. We remark that the map
(pX)∗is well-defined4 thanks to Proposition 3.1.16(i). This yields to an ap-
plication α∗ which is additive. We can see that this definition does not
depend on the choice of T . Thus α 7→ α∗ defines a map C̃ork(X, Y ) →
HomAb(Γ̃∗(M)(Y ), Γ̃∗(M)(X)). It remains to check that this map preserves
the respective compositions. Consider the diagram

X × Z rZ

((

rX

!!

X × Y × Z
qXZ

gg

qY Z //

qXY
��

Y × Z qZ //

pY
��

Z

X × Y qY
//

pX
��

Y

X.

Let α1 ∈ C̃H
dY

T1
(X × Y, ωY ) and α2 ∈ C̃H

dZ

T2
(X × Z, ωY ) be two correspon-

dences, with T1 ⊂ X × Y and T2 ⊂ Y × Z admissible. Moreover, let
β ∈M(Z). By definition, we have

(α2 ◦ α1)∗(β) = (rX)∗[(qXY )∗(p
∗
XY α1 · q∗Y Zα2) · r∗Zβ].

Write temporarily q = qXY ,

δXY Z : (X × Y × Z)→ (X × Y × Z)× (X × Y × Z),
δXY : (X × Y )→ (X × Y )× (X × Y )

4We have used Voevodsky’s trick here: X × Y 7→ X is not finite, but its restriction
pX : T → X is finite by assumption.
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the diagonal maps, x = (p∗XY α1 · q∗Y Zα2) and y = r∗Zβ. We have the following
projection formula:

q∗(x) · y = δ∗XY (q × 1)∗(x×µ y) (1)
= q∗((1× q)δXY Z)∗(x×µ y) (2)
= q∗δ

∗
XY Z(1× q)∗(x×µ y) (3)

= q∗(x · q∗(y)) (4)

where the equality (1) follows from the axiom eR2c and the definition of the
product, the equality (2) from the base change property 3.1.15 applied to the
Cartesian square

X × Y × Z (1×q)δXY Z
//

q

��

(X × Y × Z)× (X × Y )

q×1

��

X × Y
δXY

// (X × Y )× (X × Y ),

the equality (3) from functoriality and the equality (4) from the compatibility
of the pullbacks with the GW -action and the definition of the product.

Using the above projection formula, we have

(rX)∗[(qXY )∗(p
∗
XY α1 · q∗Y Zα2) · r∗Zβ] = (rX)∗[(qXY )∗(p

∗
XY α1 · q∗Y Zα2 · q∗XY r∗Zβ)]

= (pX)∗(pXY )∗(p
∗
XY α1 · q∗Y Zα2 · q∗XZr∗Zβ).

On the other hand,

α∗1 ◦ α∗2(β) = α∗1((pY )∗(α2 · q∗Zβ))
= (pX)∗(α1 · q∗Y (pY )∗(α2 · q∗Zβ))

By base change 3.1.15, q∗Y (pY )∗ = (pXY )∗q
∗
Y Z and it follows (using the pro-

jection formula once again) that

α∗1 ◦ α∗2(β) = (pX)∗(α1 · (pXY )∗(q
∗
Y Zα2 · q∗Y Zq∗Zβ))

= (pX)∗(pXY )∗(p
∗
XY α1 · q∗Y Zα2 · q∗XZr∗Zβ).

Hence the result.

We have proved the following theorem.

Theorem 3.2.4. Let M ∈ HIgtr(k) be a homotopy sheaf with generalized
transfers. The presheaf Γ̃∗(M) of abelian groups, defined by
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Γ̃∗(M)(X) = A0(X,M)

for any smooth scheme X/k, is a MW-homotopy sheaf (see Definition 5.1.10)
canonically isomorphic to M as presheaves.

Proof. Theorem 3.2.3 implies that Γ̃∗(M) is an MW-homotopy sheaf. The
second assertion follows from the fact that the natural map M → Γ̃∗(M) of
presheaves can be identify with the identity thanks to Definition 3.2.1 and
Theorem 2.1.17.

3.2.5. A morphism of sheaves with generalized transfers commutes with
the transfers TrF/E and the GW -action hence induces a natural transforma-
tion on the Rost-Schmid complex which commutes with the respective maps
3.1.12, 3.1.11 and 3.1.13 defined on the Rost-Schmid complex. After a careful
examination of the proof of Theorem 3.2.3, we can thus define a functor

Γ̃∗ : HIgtr(k) → HIMW(k)

M 7→ Γ̃∗(M)

which is conservative.

We end this section with a lemma that will be useful later.

Lemma 3.2.6. Let M ∈ HIgtr(k) be a homotopy sheaf with generalized
transfers and let ψ : E → F be a finite extension of fields. For any finite
model5 f : Y → X of ψ, we have defined in 3.1.12 a pushforward map

f∗ : A0(Y,M{ωf})→ A0(X,M).

The limit of all such maps over finite models f : Y → X defines a map

M(F, ωF/k)→M(E,ωE/k)

which is equal to the generalized transfer map TrF/E.

Proof. This follows from the definitions.

5More precisely, X (resp. Y ) is an irreducible smooth scheme with function field E
(resp. F ) and the map f : Y → X is finite.
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4. Morel’s conjecture on Bass-Tate transfers

4.1. Bass-Tate transfers
4.1.1. Let M be a homotopy sheaf and M−1 its contraction. We recall the
construction of the Bass-Tate transfer maps

trψ = trF/E : M−1(F, ωF/k)→M−1(E,ωE/k)

defined for any finite map ψ : E → F of fields.

Theorem 4.1.2. Let M ∈ HI(k) be a homotopy sheaf. Let F be a field and
F (t) the field of rational fractions with coefficients in F in one variable t.
We have a split short exact sequence

0 //M(F ) res//M(F (t)) d //
⊕

x∈(A1
F )

(1) M−1(κ(x), ωx) // 0

where d =
⊕

x∈(A1
F )

(1) ∂x is the usual differential (see 3.1.8).

Proof. See (Morel, 2012, Theorem 5.38)6.

Definition 4.1.3 (Coresidue maps). Keeping the previous notations, the
fact that the homotopy sequence is canonically split allows us to define
coresidue maps

ρx : M−1(κ(x), ωx)→M(F (t))

for any closed points x ∈ (A1
F )

(1), satisfying ∂x ◦ ρx = Idκ(x) and ∂y ◦ ρx = 0

for x 6= y where y ∈ (A1
F )

(1).

Definition 4.1.4 (Bass-Tate transfers). Let M ∈ HI(k) be a homotopy
sheaf. Let F be a field and F (t) the field of rational fractions with coefficients
in F in one variable t. For x ∈ (A1

F )
(1), we define the Bass-Tate transfer

trx/F : M−1(F (x), ωF (x)/k)→M−1(F, ωF/k)

by the formula trx/F = −∂∞ ◦ ρx.

6In fact, Morel does not use twisted sheaves but chooses a canonical generator for each
ωx instead, which is equivalent.
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Remark 4.1.5. This notion was defined and studied by Morel in (Morel,
2012, Chapter 4). We use the name Bass-Tate transfers because the idea of
this definition can be found in Bass and Tate (1973) (whereM is the classical
Milnor K-theory KMW) but other names can be found in the literature (e.g.
motivic/geometric transfers).

Lemma 4.1.6. Let M ∈ HI(k) be a homotopy sheaf. Let ϕ : E → F be a
field extension, and w be a valuation on F which restricts to a non trivial
valuation v on E with ramification e. We have a commutative square

M(E)
∂v //

ϕ∗
��

M−1(κ(v), ωv)

eε·ϕ̄∗
��

M(F )
∂w
//M−1(κ(w), ωw)

where ϕ : κ(v)→ κ(w) is the induced map and eε =
∑e

i=1〈−1〉i−1.

Proof. See (Feld, 2021, §3).

We now prove a base change formula (see also (Feld, 2020a, Claim 10)
for a similar result). The proof is similar to the original case where M
corresponds to Milnor K-theory (see (Bass and Tate, 1973, §1), or (Gille and
Szamuely, 2017, §7)).

Lemma 4.1.7. Let M ∈ HI(k) be a homotopy sheaf. Let F/E be a field
extension and x ∈ (A1

E)
(1) a closed point. Then the following diagram

M−1(E(x), ωE(x)/k)
trx/E

//

⊕y resF (y)/E(x)

��

M−1(E,ωE/k)

resF/E

��⊕
y 7→xM−1(F (y), ωF (y)/k) ∑

y ey,ε try/F

//M−1(F, ωF/k)

is commutative, where the notation y 7→ x stands for the closed points of A1
F

lying above x, and ey,ε =
∑ey

i=1〈−1〉i−1 is the quadratic form associated to the
ramification index of the valuation vy extending vx to F (t).

Proof. According to Lemma 4.1.6, the following diagram
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M(E(t))
∂x //

resF (t)/E(t)

��

M−1(E(x), ωx)

⊕yey,ε resF (y)/E(x)

��

M(F (t))
⊕y∂y

//
⊕

y 7→xM−1(F (y), ωy)

is commutative hence for all closed points in P1
F , we have

∂y(resF (t)/E(t) ◦ρx − (⊕yρy) ◦ (⊕yey,ε resF (y)/E(x))) = 0

and so the diagram

M(E(t))

resF (t)/E(t)

��

M−1(E(x), ωx)

⊕yey,ε resF (y)/E(x)

��

ρx
oo

M(F (t))
⊕

y 7→xM−1(F (y), ωy)⊕yρy
oo

is commutative. Then, we conclude according to the definition of the Bass-
Tate transfer maps 4.1.4.

Remark 4.1.8. The multiplicities ey appearing in the previous lemma are
equal to

[E(x) : E]i/[F (y) : F ]i

where [E(x) : E]i is the inseparable degree.

Lemma 4.1.9. LetM ∈ HI(k) be a homotopy sheaf. Let ϕ : E → F = E(x)
be a simple extension. Then

1. For 〈a〉 ∈ GW(E) and µ ∈ M(F, ωF/k), one has trx/E
(
〈ψ(a)〉 · µ

)
=

〈a〉 · trx/E(µ).

2. For 〈a〉 ∈ GW(F, ωF/k) and µ ∈M(E), one has trx/E
(
〈a〉·resF/E(µ)

)
=

trx/E(〈a〉) · µ.

Proof. This follows by GW-linearity from the definitions (see (Bachmann
and Yakerson, 2020, Lemma 5.24)).

Definition 4.1.10. Let M ∈ HI(k) be a homotopy sheaf. We denote by
MQ the homotopy sheaf defined by
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X 7→M(X)⊗Z Q

and by M−1,Q the homotopy sheaf (MQ)−1.

Corollary 4.1.11. Let M ∈ HI(k) be a homotopy sheaf. Let ϕ : E →
F = E(x) be a simple extension. The kernel of the restriction map resF/E :
M−1(E) → M−1(F ) is killed by trx/E(1). In particular: if the Hopf map
η acts trivially on M−1, then the restriction map resF/E : M−1,Q(E) →
M−1,Q(F ) is injective.

Proof. Let x ∈ ker(resF/E). The previous projection formula shows that
trx/E(1) · x = 0, thus the first assertion. A priori, trx/E(1) is in GW(E),
i.e. an element of the form

∑n
i=1〈ai〉 (where n = [F : E], ai,∈ E× and

〈ai〉 = 1 + η[ai]); but if we assume moreover that η acts trivially, then the
action of trx/E(1) onM−1,Q(E) is the multiplication by n (which is a nonzero
natural number) and thus x = 0, which proves the second assertion.

Definition 4.1.12. Let F = E(x1, x2, . . . , xr) be a finite extension of a field
E and consider the chain of subfields

E ⊂ E(x1) ⊂ E(x1, x2) ⊂ · · · ⊂ E(x1, . . . , xr) = F.

Define by induction:

trx1,...,xr/E = trxr/E(x1,...,xr−1) ◦ · · · ◦ trx2/E(x1) ◦ trx1/E

Conjecture 4.1.13 (Morel conjecture). Keeping the previous notations,
let F = E(x1, x2, . . . , xr) be a finite extension of a field E. The map

trx1,...,xr/E : M−1(F, ωF/k)→M−1(E,ωE/k)

does not depend on the choice of the generating system (x1, . . . , xr).

Remark 4.1.14. This was claimed by Morel in (Morel, 2012, Remark 4.31)
and (Morel, 2011, Remark 5.10) (see also (Bachmann, 2020, Remark 4.3)
for a similar conjecture). Historically, a similar conjecture was made by Bass
and Tate in Bass and Tate (1973) for the case whereM = KMW is the Milnor
K-theory (this claim was proved only a decade later by Kato Kato (1980)).

Proposition 4.1.15 (Projection formulas). Let ϕ : E → F = E(x1, x2, . . . , xr)
be a finite extension. Then
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1. For 〈a〉 ∈ GW(E) and µ ∈M(F, ωF/k), one has trx1,...,xr/E(〈ψ(a)〉·µ) =
〈a〉 · trx1,...,xr/E(µ).

2. For 〈a〉 ∈ GW(F, ωF/k) and µ ∈M(E), one has trx1,...,xr/E(〈a〉·resF/E(µ)) =
trx1,...,xr/E(〈a〉) · µ.

Proof. This is immediate by induction on r according to Lemma 4.1.9.

Theorem 4.1.16 (Strong R1c). Let M ∈ HI(k) be a homotopy sheaf. Let
E be a field, F/E a finite field extension and L/E an arbitrary field extension.
Write F = E(x1, . . . , xr) with xi ∈ F , R = F ⊗E L and ψp : R → R/p the
natural projection defined for any p ∈ Spec(R). Then the diagram

M−1(F, ωF/k)
trx1,...,xr/E //

⊕p res(R/p)/F

��

M−1(E,ωE/k)

resL/E

��⊕
p∈Spec(R) M−1(R/p, ω(R/p)/k) ∑

p(mp)ε trψp(a1),...,ψp(ar)/L

//M−1(L, ωL/k)

is commutative where (mp)ε is the quadratic form associated to the length of
the localized ring R(p) (see Notation 1.2).

Proof. We prove the theorem by induction. For r = 1, this is Lemma 4.1.7.
Write E(x1)⊗EL =

∏
j Rj for some Artin local L-algebrasRj, and decompose

the finite dimensional L-algebra F ⊗E(x1) Rj as F ⊗E(x1) Rj =
∏

iRij for
some local L-algebras Rij. We have F ⊗E L '

∏
i,j Rij. Denote by Lj (resp.

Lij) the residue fields of the Artin local L-algebras Rj (resp. Rij), and mj

(resp. mij) for their geometric multiplicity. We can conclude as the following
diagram commutes

M−1(F, ωF/k)
trx1,...,xr/E //

⊕ij resLij/F

��

M−1(E(x1), ωE(x1)/k)

⊕ resLj/E(x1)

��

trx1/E //M−1(E,ωE/k)

resL/E

��⊕
ijM−1(Lij, ωLij/k)∑

ij(mijm
−1
j )ε trψij(x1),...,ψij(xr)/Lj

//
⊕

jM−1(Lj, ωLj/k) ∑
j(mj)ε trψj(x1)/L

//M−1(L, ωL/k)

since both squares are commutative by the inductive hypothesis and the
multiplicity formula (mn)ε = mεnε for any natural numbers m,n.
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Proposition 4.1.17. Let M ∈ HI(k) be a homotopy sheaf. Let E → F be a
field extension. If the Hopf map η acts trivially on M−1, then the restriction
map resF/E : M−1,Q(E)→M−1,Q(F ) is injective.

Proof. We may assume that F/E is finitely generated. By induction on
the number of generators of F over E, we may assume that F = E(x) is
generated by a single element x ∈ F . If x is algebraic over E, we know from
Corollary 4.1.11 that resF/E is killed by trx/E(1). Since the Hopf map acts
trivially, the action of trx/E(1) is given by the multiplication by [F : E] and
we obtain the result. If x is transcendent over E, then we know (thanks to
Theorem 4.1.2) that M−1(E) is a direct summand in M−1(F ).

Corollary 4.1.18. LetM ∈ HI(k) be a homotopy sheaf. Let F/E be a finite
field extension, and let x1, . . . , xr and y1, . . . , ys be two generating system for
F/E. If the Hopf map η acts trivially on M−1, then

trx1,...,xr/E = try1,...,ys/E

seen as morphism from M−1,Q(F ) to M−1,Q(E).

Proof. We apply Theorem 4.1.16 two times with F = E(x1, . . . , xr) and
F = E(y1, . . . , ys), and with L = E an algebraic closure of E. Hence
resL/E ◦ trx1,...,xr/E = resL/E ◦ try1,...,ys/E and we end with Proposition 4.1.17.

4.1.19. In the following, we assume that 2 is invertible. The proof of the
next theorem uses a technique which consists in splitting an object into a (+)-
part and a (−)-part. Usually, the splitting is only discussed for P1-spectra
(see e.g. (Cisinski and Déglise, 2019, §16.2.1)) but similar results hold in our
more general context.

The isomorphism

Gm → Gm

t→ t−1

defines (following (Morel, 2003, Lemma 6.1.1)) an element ε in End
SHS1

(k,Q)
(Gm)

which satisfies ε2 = 1. We define two projectors of Gm in the category
SHS1

(k,Q):

e+ = 1−ε
2

and e− = 1+ε
2
.
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As the triangulated category SHS1

(k,Q) is pseudo-abelian, we can define
two objects as follows:

Gm+ = Im(e+) and Gm− = Im(e−).

Then for any object M ∈ HI(k), we set

(M−1,Q)+ = Hom(Gm+,MQ) and (M−1,Q)− = Hom(Gm−,MQ)

We have a decomposition

M−1,Q = (M−1,Q)+ ⊕ (M−1,Q)−.

Finally, we also recall that ηε = η (according to (Morel, 2003, §6.2.3)).

Theorem 4.1.20. Assume that 2 is invertible. Let M ∈ HI(k) be a ho-
motopy sheaf. The sheaf M−1,Q has functorial Bass-Tate transfer maps (i.e.
Conjecture 4.1.13 holds for MQ).

Proof. The sheafM−1,Q splits into two sheaves (M−1,Q)+ and (M−1,Q)−. On
one hand, the Hopf map η acts trivially on M+

−1,Q hence there is a structure
of functorial transfers thanks to Corollary 4.1.18. On the other hand, we
have (according to (Morel, 2012, Lemma 3.43)):

e− = 1+ε
2

= 1−〈−1〉
2

= 1−(1+η[−1])
2

= −η[−1]
2

which is equal to IdGm− on the minus part. Since Gm-stabilization (from
S1-spectra to S1-spectra) induces an isomorphism on the endomorphism
groups of positive powers of Gm (one always gets GW, see also (Morel, 2012,
Corollary 6.43)), one can check P1-stably that η induces an isomorphism
Gm− ∧Gm → Gm− and thus

(M−1,Q)− ' Hom(Gm−,MQ) ' Hom(Gm− ∧Gm,MQ) ' (M−2,Q)−.

The latter has a structure of functorial transfers according to (Morel, 2012,
Theorem 4.27). Hence the result.

We summarize the previous results in the following theorem.

Theorem 4.1.21. Let M ∈ HI(k) be a homotopy sheaf. Then:

1. Assume that 2 is invertible. The rational contracted homotopy sheaf
M−1,Q is a homotopy sheaf with generalized transfers.
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2. Assuming Conjecture 4.1.13, the contracted homotopy sheaf M−1 is a
homotopy sheaf with generalized transfers.

Proof. The GW-action is defined in 2.2.3, functoriality of transfers eR1b
follows from Corollary 4.1.18 or Conjecture 4.1.13, the base change eR1c
is Theorem 4.1.16, the projection formulas eR2 are proved in Proposition
4.1.15 and the compatibility axiom eR3b can be deduced from (Morel, 2012,
Theorem 5.19).

4.2. Unicity of transfers
The goal of this subsection is to prove Theorem 4.2.3 which asserts that

the structure of Bass-Tate transfer maps on a contracted homotopy sheaf
M−1 is, in some sense, unique.

Lemma 4.2.1 (eR3c and eR3d). Let M ∈ HI(k) be a homotopy sheaf.
Let ι : E → F be an extension of fields and w a valuation on F that restricts
to the trivial valuation on E. Then the composition

M(E) ι∗ //M(F )
∂w //M−1(κ(w), ωw)

is zero. Moreover, let ῑ : E → κ(w) be the induced map. For any prime π of
w, the following diagram

M−1(E) ι∗ //

ῑ∗

��

M−1(F )

[π]

��

M−1(κ(w)) M(F )
Θ◦∂w
oo

is commutative (where Θ is the canonical isomorphism induced by the trivi-
alization of ωw through the choice of π).

Proof. The first identity is deduced from the long exact sequence 2.2.5. The
commutative square follows from (Bachmann and Yakerson, 2020, Corollary
5.23).

Lemma 4.2.2 (eR3e). Let E be a field over k with a valuation v and let u
be a unit of v. Then

∂v ◦ [u] = ε[u] ◦ ∂v
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where ε is −〈−1〉 as usual.

Proof. See (Morel, 2012, Lem 5.10).

Theorem 4.2.3. Let M ∈ HIgtr(k) be a homotopy sheaf with generalized
transfers. We have for any simple extension ψ : F → F (x):

(a) A generalized transfer map Trψ : M−1(F (x), ωF (x)/k) → M−1(F, ωF/k)
induced by the structure of a homotopy sheaf with generalized transfers
on M (see also Remark 3.1.5).

(b) A Bass-Tate transfer map trx/F : M−1(F (x), ωF (x)/k) → M−1(F, ωF/k)
defined in 4.1.4.

Then the two transfer maps coincide : Trψ = trx/F .

Proof. Fix a field F and F (t) the field of rational fractions with coefficients
in F in one variable t, and fix a simple extension ψ : F → F (x). Consider
the canonical inclusion ι : F (x)→ F (x)(t) and define

Φx : M−1(F (x), ωF (x)/k)→M(F (t), ωF (t)/k)

as the composite Φx = TrF (x)(t)/F (t) ◦[t − ι(x)] ◦ ι∗ where Tr denotes the
generalized transfers of point (a). A combination of eR3b, Lemma 4.2.1 and
Lemma 4.2.2 shows that

∂x ◦ Φx = Id,

−∂∞ ◦ Φx = TrF (x)/F ,

which is exactly the definition of the Bass-Tate transfers trF (x)/F .

5. MW-homotopy sheaves

5.1. Sheaves with MW-transfers
In this subsection, we recall the basic definition of sheaves with MW-

transfers in order to fix the notations. We follow the presentation of (Bach-
mann et al., 2020, Chapter 2).

5.1.1. Let X and Y be smooth schemes over k and let T ⊂ X × Y be
a closed subset. Any irreducible component of T maps to an irreducible
component of X through the projection X × Y → X.
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Definition 5.1.2. If, when T is endowed with its reduced structure, the pro-
jection map T → X is finite and surjective for every irreducible component
of T , we say that T is an admissible subset of X×Y . We denote by A(X, Y )
the set of admissible subsets of X × Y , partially ordered by inclusions.

5.1.3. If Y is equidimensional, d = dimY and pY : X × Y → Y is the
projection, we define a covariant functor

A(X, Y )→ Ab

by associating to each admissible subset T ∈ A(X, Y ) the group

C̃H
d

T (X × Y, p∗Y ωY/k) = Hd
T (X × Y,KMW

d {p∗Y ωY/k})

(see (Fasel, 2020, Definition 2.5)) and to each morphism T ′ ⊂ T the extension
of support morphism

C̃H
d

T ′(X × Y, p∗Y ωY/k)→ C̃H
d

T (X × Y, p∗Y ωY/k)

and, using that functor, we set

C̃ork(X, Y ) = colimT∈A(X,Y ) C̃H
d

T (X × Y, p∗Y ωY/k).

If Y is not equidimensional, then Y =
⊔
j Yj with each Yj equidimensional

and we set

C̃ork(X, Y ) =
∏

j C̃ork(X, Yj).

By additivity of Chow-Witt groups, if X =
⊔
iXi and Y =

⊔
j Yj are the

respective decompositions of X and Y in irreducible components, we have

C̃ork(X, Y ) =
∏

i,j C̃ork(Xi, Yj).

Remark 5.1.4. In the sequel, we will simply write ωY in place of p∗Y ωY/k.

Example 5.1.5. Let X be a smooth scheme of dimension d. Then

C̃ork(Spec(k), X) =
⊕

x∈X(d) C̃H
d

{x}(X,ωX) =
⊕

x∈X(d) GW(κ(x), ωκ(x)/k).

On the other hand, C̃ork(X, Spec(k)) = C̃H
0
(X) = KMW

0 (X) (recall 2.1.19)
for any smooth scheme X.
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5.1.6. The group C̃ork(X, Y ) admits an alternate description which is often
useful. Let X and Y be smooth schemes, with Y equidimensional. For any
closed subscheme T ⊂ X×Y of codimension d = dimY , we have an inclusion

C̃H
d

T (X × Y, ωY/k) ⊂
⊕

x∈(X×Y )(d) KMW
0 (κ(x), det(ωx ⊗ (ωY/k)x))

and thus

C̃ork(X, Y ) =
⋃
T∈A(X,Y ) C̃H

d

T (X × Y, ωY/k) ⊂⊕
x∈(X×Y )(d) KMW

0 (κ(x), det(ωx ⊗ (ωY/k)x)).

In general, the inclusion

C̃ork(X, Y ) ⊂
⊕

x∈(X×Y )(d) KMW
0 (κ(x), det(ωx ⊗ (ωY/k)x))

is strict as shown by Example 5.1.5. As an immediate consequence of this
description, we see that the map

C̃H
d

T (X × Y, ωY )→ C̃ork(X, Y )

is injective for any T ∈ A(X, Y ).

5.1.7 (Composition of finite MW-correspondences). LetX, Y and Z
be smooth schemes of respective dimension dX , dY and dZ , with X and
Y connected. Let V ∈ A(X, Y ) and A(Y, Z) be admissible subsets. If
β ∈ C̃H

dY

V (X × Y, ωY/k) and α ∈ C̃H
dZ

T (Y ×Z, ωZ/k) are two cycles, then the
expression

α ◦ β = (qXY )∗[(qY Z)∗β · (pXY )∗α]

is well-defined and yields a composition

◦ : C̃ork(X, Y )× C̃ork(Y, Z)→ C̃ork(X,Z)

which is associative (see (Bachmann et al., 2020, Ch.2, §4.2)).

Definition 5.1.8. The category of finite MW-correspondences over k is by
definition the category C̃ork whose objects are smooth schemes and whose
morphisms are the elements of abelian groups C̃ork(X, Y ).

Remark 5.1.9. The category C̃ork is a symmetric monoidal additive cate-
gory (see (Bachmann et al., 2020, Chapter 2, Lemma 4.4.2)).
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Definition 5.1.10. A presheaf with MW-transfers is a contravariant addi-
tive functor C̃ork → Ab. A (Nisnevich) sheaf with MW-transfers is a presheaf
with MW-transfers such that its restriction to Smk via the graph functor
is a Nisnevich sheaf. We denote by P̃Sh(k) (resp. S̃h(k)) the category of
presheaves (resp. sheaves) with MW-transfers and by HIMW(k) the category
of homotopy sheaves with MW-transfers (also calledMW-homotopy sheaves).

Example 5.1.11. For any j ∈ Z, the contravariant functor X 7→ KMW
j (X)

is a presheaf on C̃ork.

5.1.12. Pushforwards. Let X and Y be two smooth schemes of di-
mension d and let f : X → Y be a finite morphism such that any irre-
ducible component of X surjects to the irreducible component of Y it maps
to. Assume that we have an orientation (L, ψ) of ωf , that is an isomor-
phism ψ : L ⊗ L → ωf of line bundles. We define a finite correspondence
α(f,L, ψ) ∈ C̃ork(Y,X). Let γ′f : X → Y ×X be the transpose of the graph
of f . Since X is an admissible subset of Y ×X, we have a transfer map

(γ′f )∗ : KMW
0 (X,ωf )→ C̃H

d

X(Y ×X,ωX/k)→ C̃ork(Y,X).

The map ψ yields an isomorphism KMW
0 (X)→ KMW

0 (X,ωf ). We define the
finite MW-correspondence α(f,L, ψ) as the image of 〈1〉 under the composite

KMW
0 (X)→ KMW

0 (X,ωf )→ C̃H
d

X(Y ×X,ωX/k)→ C̃ork(Y,X).

Now let M ∈ HIMW(k) be a homotopy sheaf with MW-transfers. Denote
by (M ⊗ ωf )X (resp. MY ) the canonical (twisted) sheaf associated to M
defined on the Zariski site XZar (resp. YZar) introduced in 2.2.4 and define
a natural transformation

f∗ : f∗(M ⊗ ωf )X →MY

by taking (as in 2.2.4) the sheafification of the natural transformation of
presheaves

V ∈ YZar 7→ (M(f−1(V ), ωf|f−1(V )
)→M(V ))

(µ⊗ l) 7→ α(f, ψl, Ll)
∗(µ)

where (ψl,Ll) is the orientation of ωf|f−1(V )
associated to l ∈ ω×f|f−1(V )

. Taking
global sections, this leads in particular to a map
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M(tf) : M(X,ωf )→M(Y )

for any finite morphism f : X → Y .
We can check the following propositions.

Proposition 5.1.13. Let M ∈ HIMW(k) and consider two finite morphisms

X
f
// Y

g
// Z of smooth schemes. Then

M(t(g ◦ f)) = M(tg) ◦M(tf).

Proof. Keeping the previous notations, if (L′, ψ′) is an orientation of ωg,
then (L⊗ f ∗L′, ψ⊗ f ∗ψ′) is an orientation of ωg◦f = ωf ⊗ f ∗ωg, and we have
α(f,L, ψ) ◦ α(g,L′, ψ′) = α(g ◦ f,L ⊗ f ∗L′, ψ ⊗ f ∗ψ′).

Proposition 5.1.14. Let M ∈ HIMW(k) be a homotopy sheaf with MW-
transfers. Let i : Z → X and i′ : T → Y be two closed immersions and let
f : Y → X be a finite morphism. The following diagram

M(Y − T )
∂i′ //

M(tf)

��

M−1(T, ωT/Y )

M(tf)

��

M(X − Z)
∂i //M−1(Z, ωZ/X)

is commutative.

Proof. Since we can identify M−1(T, ωi′) with H1
T (Y,M) (and M−1(T, ωi)

with H1
Z(X,M)), the result follows from the fact that MW-transfers act on

cohomology with support and the localization long exact sequence is functo-
rial (see also (Déglise et al., 2021, Proposition 2.2.11) for a similar result).

5.1.15. Tensor products. Let X1, X2, Y1, Y2 be smooth schemes over
Spec k. Let d1 = dimY1 and d2 = dimY2. Let α1 ∈ C̃H

d1

T1
(X1×Y1, ωY1/k) and

α2 ∈ C̃H
d2

T2
(X2 × Y2, ωY2/k) for some admissible subsets Ti ⊂ Xi × Yi. The

exterior product defined in (Fasel, 2008, §4) gives a cycle

(α1 × α2) ∈ C̃H
d1+d2

T1×T2
(X1 × Y1 ×X2 × Y2, p

∗
Y1
ωY1/k ⊗ p∗Y2

ωY2/k)

where pYi : X1 × Y1 × X2 × Y2 → Yi is the canonical projection to the
corresponding factor. Let σ : X1×Y1×X2×Y2 → X1×X2×Y1×Y2 be the
transpose isomorphism. Applying σ∗, we get a cycle
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σ∗(α1 × α2) ∈ C̃H
d1+d2

σ(T1×T2)(X1 ×X2 × Y1 × Y2, p
∗
Y1
ωY1/k ⊗ p∗Y2

ωY2/k).

Since p∗Y1
ωY1/k ⊗ p∗Y2

ωY2/k) = ωY1×Y2/k, it is straightforward to check that
σ(T1 × T2) is finite and surjective over X1 ×X2. Thus σ∗(α1 × α2) defines a
finite MW-correspondence between X1 ×X2 and Y1 × Y2.

Definition 5.1.16. Let X1, X2, Y1, Y2 be smooth schemes over Spec k, and
α1 ∈ C̃ork(X1, Y1) and α2 ∈ C̃ork(X2, Y2) two MW-correspondences. We
define their tensor products as X1⊗X2 = X1×X2 and α1⊗α2 = σ∗(α1×α2).

5.1.17. We denote by c̃(X) : Y 7→ C̃ork(Y,X) the representable presheaf
associated to a smooth scheme X (be careful that this is not a Nisnevich
sheaf in general). The category of MW-presheaves is an abelian Grothendieck
category with a unique symmetric monoidal structure such that the Yoneda
embedding

C̃ork → S̃h(k), X 7→ ãc̃(X)

is symmetric monoidal (where ã is the sheafification functor, see (Bachmann
et al., 2020, Chapter 3, §1.2.7)). The tensor product is denoted by ⊗HIMW

and commutes with colimits (hence the monoidal structure is closed, see
(Bachmann et al., 2020, Chapter 3, §1.2.14)).

5.2. Structure of generalized transfers
In this section, we study the category of MW-homotopy sheaves. For

any MW-homotopy sheaf we construct a canonical structure of generalized
transfers (see Definition 3.1.1).

5.2.1. Let M ∈ HIMW(k) be a homotopy sheaf with MW-transfers. We
denote by Γ̃∗(M) the homotopy sheaf M equipped with its structure of GW-
module coming from its structure of MW-transfers, and we define generalized
transfers as follows. Let ψ : E → F be a finite extension of fields. Consider
a smooth model (X, x) (resp. (Y, y)) of E/k (resp. F/k) such that ψ cor-
responds to a map Yy → Xx. We may assume that this map is induced by
a finite morphism f : Y → X. We consider the pushforward on the MW–
homotopy sheaf Γ̃∗(M) with respect to the finite morphism f defined in 5.1.12
and take the limit over all model of F/E so that we obtain a morphism

ψ∗ : Γ̃∗(M)(F, ωF/k)→ Γ̃∗(M)(E,ωE/k)
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of abelian groups. This defines a homotopy sheaf Γ̃∗(M) canonically iso-
morphic to M (as presheaves) and equipped with a structure of transfers
eD2.

Theorem 5.2.2. Keeping the previous notations, the transfer maps ψ∗ de-
fines a structure of generalized transfers (see Definition 3.1.1) on the homo-
topy sheaf Γ̃∗(M).

Proof. The functoriality property eR1b results from Proposition 5.1.13.
According to Proposition 4.1.9 and Theorem 4.1.16, the projection formu-

las eR2 and the base change rule eR1c are true for any contracted homotopy
sheaf hence we only have to prove that Γ̃∗(M) is a contracted homotopy
sheaf:

Lemma 5.2.3. Let M ∈ HIMW(k) a MW-homotopy sheaf. Then there is a
canonical isomorphism

Γ̃∗(M) ' (Gm ⊗HIMW Γ̃∗(M))−1

of homotopy sheaves which is compatible with the generalized transfers struc-
ture in the sense that the diagram

Γ̃∗(M)(E(x))
ψ∗

//

'
��

Γ̃∗(M)(E)

'
��

(Gm ⊗HIMW Γ̃∗(M))−1(E(x))
trx/E

// (Gm ⊗HIMW Γ̃∗(M))−1(E)

is commutative for any simple extension ψ : E → E(x) of fields, where trx/E
is the Bass-Tate transfer map defined in 4.1.4.

Proof. The isomorphism Γ̃∗(M) ' (Gm ⊗HIMW Γ̃∗(M))−1 is an equivalent
reformulation of the cancellation theorem (Fasel and Østvær, 2017, Theorem
4.0.1). The second assertion is a corollary of Theorem 4.2.3.

Still denoting byM ∈ HIMW(k) a MW-homotopy sheaf, we need to check
that Γ̃∗(M) satisfies eR3b where M ∈ HIMW(k), which can be deduced from
the definitions and Proposition 5.1.14. This concludes the proof of Theorem
5.2.2.

5.2.4. As in 3.2.5, we see that Γ̃∗ defines a functor
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Γ̃∗ : HIMW(k)→ HIgtr(k)
M 7→ Γ̃∗(M)

which is conservative.

Theorem 5.2.5. Keeping the notations of 3.2.5 and 5.2.4, the functors

HIMW(k)
Γ̃∗ //

HIgtr(k)
Γ̃∗

oo

form an equivalence of categories.

Proof. First, letM ∈ HIgtr(k) be a homotopy sheaf with generalized trans-
fers. For any smooth scheme X, we have a canonical isomorphism

aX : Γ̃∗Γ̃∗(M)(X)→M(X)

which is compatible with pullback maps and the GW-action. Compatibility
with the generalized transfers eD2 results from Lemma 3.2.6.

Second, let M ∈ HIMW(k) be a MW-homotopy sheaf. For any smooth
scheme X, we have a canonical isomorphism

bX : M → Γ̃∗Γ̃
∗(M)(X)

which is compatible with (smooth) pullbacks and the GW-action. Since push-
forward p∗ of a finite map p : Y → X is locally given by the multiplication
by the correspondence α(p, ψl, Ll) of 5.1.12, we see that b commutes with p∗.
Thus b commutes with the multiplication by any cycle α ∈ C̃H

dY

T (X×Y, ωY/k)
(where X, Y are two smooth schemes and T ∈ X×Y is an admissible subset)
thanks to the identity

α∗(β) = (pX)∗(α · p∗Y (β))

where pX : T → X × Y and pY : X × Y → Y are the canonical morphisms.

6. Applications

6.1. Infinite suspensions of homotopy sheaves
In order to fix notations, we recall that we have the following commutative

diagram of categories :
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H•(k)

Σ∞
S1
//
SHS1

(k)
Ω∞
S1

oo

Σ∞Gm //

N
��

SH(k)
Ω∞Gm

oo

N

��

Deff
A1(k)

K

OO

Σ∞ //
DA1(k)

Ω∞
oo

K

OO

where H•(k) is the pointed unstable homotopy category, SHS1

(k) (resp.
SH(k)) is the category obtain after S1-stabilization (resp. P1-stabilization)
and Deff

A1(k) (resp. DA1(k)) the (resp. stable) effective A1-derived category
(see (Cisinski and Déglise, 2019, §5)); all of these triangulated categories are
equipped with Morel’s homotopy t-structure.

Since (N,K) is an equivalence that respects the t-structure, we have an
equivalence (of additive symmetric monoidal categories) DA1(k)♥ ' SH(k)♥

(see (Déglise, 2018, §1.2.4)); since (Σ∞,Ω∞) is an adjunction that respects
the t-structure, we also have an adjunction on the respective hearts (see also
ibid. §4):

HI(k)
σ∞ //

HM(k)
ω∞
oo

where we recall that HM(k) is the category of homotopy modules.

6.1.1. We also have the following commutative diagram of categories

Deff
A1(k)

��

Σ∞ //DA1(k)

��

D̃M
eff

(k)
Σ∞MW // D̃M(k)

where D̃M
eff

(k) and D̃M(k) are the categories of (effective) MW-motivic
complexes (see (Bachmann et al., 2020, Chapter 3)). Looking at the respec-
tive hearts, we thus obtain the following commutative diagram

HI(k)
σ∞ //

γ̃∗

��

HM(k)
ω∞

oo

γ∗

��

HIMW(k)
σ∞MW //

γ̃∗

OO

HMMW(k)
ω∞MW

oo

γ∗

OO
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where we recall that HMMW(k) denotes the category of Milnor-Witt homo-
topy modules, i.e. the category of pairs (M∗, ω∗) where M∗ is a Z-graded
homotopy invariant sheaf with MW-transfers and ωi : Mi → (Mi+1)−1 are
isomorphisms of sheaves with MW-transfers.

Finally, we recall the two following well-known theorems in order to mo-
tivate Theorem 6.1.6.

Theorem 6.1.2. With the previous notations, the adjunction

HM(k)
γ∗
//
HMMW(k).

γ∗
oo

is an equivalence of categories.

Proof. See (Feld, 2021, Theorem 5.9).

Theorem 6.1.3. With the previous notations, the functor σ∞MW : HIMW(k)→
HMMW(k) is fully faithful.

Proof. According to (Bachmann et al., 2020, Chapter 3, Cor. 3.3.9), the
functor Σ∞MW is fully faithful (because our base field k is infinite). This
fact implies that σ∞MW is also fully faithful 7. Indeed, for any sheaf M ∈
HIMW(k), we have ω∞MW(M) = Ω∞MW(M) = H0Ω∞MW(M) and σ∞MW(M) =
τ≤0Σ∞MW(M) = H0Σ∞MW(M) hence the arrow

Id→ ω∞MWσ
∞
MW = H0(Id→ Ω∞MWΣ∞MW)

is an isomorphism if Σ∞MW is fully faithful.

Remark 6.1.4. A consequence of Theorem 6.1.3 is that, if M ∈ HIMW(k)
is a sheaf with MW-transfers, then for any natural number n, there exists a
sheaf with MW-transfers N ∈ HIMW(k) such that M ' N−n.

6.1.5. Theorem 6.1.2 and Theorem 6.1.3 suggest that similar results should
hold for the functor γ̃∗ : HIMW(k)→ HI(k) that forgets MW-transfers. This
functor is clearly faithful and conservative but cannot be full according to
the following counterexample due to Bachmann:

7Note that the converse is (in general) not true for categories with a t-structure.
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Consider the constant sheaf Z, which admits MW-transfers. For any MW-
homotopy sheaf F , the set of maps HomHIMW(Z, F ) injects into the subset
of F (k) given by the annihilator of the fundamental ideal I of GW(k) acting
on F (k) (since Z = GW /I and maps with MW-transfers from GW to F are
given by F (k)). On the other hand, the set of maps HomHI(Z, F ) is given
by all of F (k).

However, we can still characterize its essential image thanks to the fol-
lowing theorem.

Theorem 6.1.6. Let M ∈ HI(k) be a homotopy sheaf. The following asser-
tions are equivalent:

(i) There exists M ′ ∈ HI(k) satisfying Conjecture 4.1.13 and such that
M 'M ′

−1.

(ii) There exists a structure of generalized transfers on M .

(iii) There exists a structure of MW-transfers on M .

(iv) There exists M ′′ ∈ HI(k) such that M 'M ′′
−2.

Proof. (i)⇒ (ii) See Theorem 4.1.21.
(ii)⇒ (iii) See Theorem 5.2.5.
(iii) ⇒ (iv) Assume M ∈ HIMW(k). Put M∗ = σ∞MW(M) ∈ HMMW(k)

so that we have ω∞MW(M∗) = M0 ' (M2)−2. Since σ∞MW is fully faithful, the
map M → ω∞MWσ

∞
MW(M) is an isomorphism thus M 'M ′′

−2 with M ′′ = M2.
(iv)⇒ (i) Straightforward.

Remark 6.1.7. Keeping the previous notations, we remark that the equiv-
alence (i)⇔ (ii) was conjectured by Morel in (Morel, 2011, Remark 5.10).

6.2. Towards conservativity of Gm-stabilization
We end with a discussion about a conjecture introduced in Bachmann and

Yakerson (2020). In the classical theory of topological spaces, the functor
Spc∗ → D(Ab), sending a space to its singular chain complex, is conservative
on (at least) simply connected spaces. We would like to study a similar
question in the motivic context: up to which extent is the functor

Σ∞Gm : SHS1

(k)→ SH(k)
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conservative? The conjecture of Bachmann and Yakerson relied on the hope
that this is true after Gm-suspension. Precisely, for any natural number n,
denote by SHS1

(k)(n) the localizing subcategory of SHS1

(k) generated by
Σn

GmΣ∞S1X+ where X ∈ Smk. The fact that the functor Σ∞Gm : SHS1

(k)(1)→
SH(k) is conservative on bounded below objects reduces to proving the fol-
lowing statement (see (Bachmann and Yakerson, 2020, Conjecture 1.1)).

Conjecture 6.2.1 (Bachmann-Yakerson). If d ≥ 1 is a natural number,
then the canonical functor

Σ∞−d♥Gm : SHS1

(k)(d)♥ → SH(k)eff♥

is an equivalence of abelian categories.

Recall that SH(k)eff denotes the localizing subcategory generated by the im-
age of SHS1

(k) in SH(k) under Σ∞Gm and the hearts are taken with respect to
homotopy t-structures on these categories. As a reformulation of the conjec-
ture, we remark that the category SHS1

(k)♥ is equivalent to the category of
homotopy sheaves HI(k) and that the category SH(k)eff♥ is equivalent to the
category HIfr(k) of homotopy sheaves with framed transfers (see (Bachmann
and Yakerson, 2020, Theorem 5.14)). We have the following theorem.

Theorem 6.2.2. Let d > 0 be a natural number. If d > 1 or Conjecture
4.1.13 holds, then for any homotopy sheaf M ∈ HI(k), the Bass-Tate trans-
fers on M−d extend to framed transfers and the canonical functor

Σ∞−d♥Gm : SHS1

(k)(d)♥ → SH(k)eff♥

is an equivalence of abelian categories.

Proof. Let M ∈ HI(k) be a homotopy sheaf. If d > 1 (resp. if Conjecture
4.1.13 holds), then M−d (resp. M−1) has a structure of generalized transfers
hence of Milnor-Witt transfers according to Subsection 5.2. Thus it has a
structure of framed transfers (see (Bachmann et al., 2020, Chapter 3, §2))
and the first result holds. The second one is (Bachmann, 2020, Theorem
4.5).

As an application of our theorem 4.1.21, we obtain:

Corollary 6.2.3. Let d > 0 be a natural number. The Bachmann-Yakerson
conjecture holds (integrally) for d = 2 and rationally for d = 1: namely, the
canonical functor
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SHS1

(k)(2)→ SH(k)

is conservative on bounded below objects, the canonical functor

SHS1

(k)(1)→ SH(k)

is conservative on rational bounded below objects, and the canonical functor

HI(k,Q)(1)→ HIfr(k,Q)

is an equivalence of abelian categories.
Moreover, let X be a pointed motivic space. Then the canonical map

π0Ωd
P1Σd

P1X → π0Ωd+1
P1 Σd+1

P1 X

is an isomorphism for d = 2.

Proof. The last result follows as in the proof of (Bachmann, 2020, Theorem
1.1).

Moreover, we can solve (integrally) a question left open after the work of
Bachmann et al. (2020) and Garkusha and Panin (2021):

Corollary 6.2.4. The category of homotopy sheaves with generalized trans-
fers, the category of MW-homotopy sheaves and the category of homotopy
sheaves with framed transfers are equivalent:

HIgtr(k) ' HIMW(k) ' HIfr(k).

Proof. The first equivalence is our Theorem 5.2.5; the second one is due8

to Bachmann (combine (Bachmann, 2021, Proposition 29) and (Bachmann
and Yakerson, 2020, Theorem 5.14)).

Remark 6.2.5. We end with a remark on the characteristic of the base
field k. Indeed, we have assumed that char(k) 6= 2 but we believe that
the assumption could be lifted. For that, the foundations of the theory of
Milnor-Witt correspondence as developed in Bachmann et al. (2020) should
be extended to the case of characteristic 2 (in particular, we would like to

8The equivalence between HIMW(k) and HIfr(k) also appears in (Ananyevskiy and
Neshitov, 2019, Theorem 8.12).
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prove the cancellation theorem for Milnor-Witt transfers (Fasel and Østvær,
2017, Theorem 4.0.1) in full generality).

If one is interested only in the applications in Section 6 for fields of char-
acteristic 2, then one may also try to work exclusively with framed transfers
since we know that the cancellation theorem is true for framed correspon-
dences in characteristic 2 (see Ananyevskiy et al. (2021)).

Ananyevskiy, A., Garkusha, G., Panin, I., 2021. Cancellation theorem for
framed motives of algebraic varieties, advances in Mathematics 383.

Ananyevskiy, A., Neshitov, A., 2019. Framed and MW-transfers for homo-
topy modules, Selecta Mathematica 25 (2), 1-41.

Asok, A., Østvær, P. A., 2019. A1-homotopy theory and contractible varieties:
a survey, arXiv:1903.07851.

Bachmann, T., 2020. The zeroth P1-stable homotopy sheaf of a motivic space,
arXiv:2003.12021v1.

Bachmann, T., 2021. Motivic tambara functors, Mathematische Zeitschrift
297 (3), 1825-1852.

Bachmann, T., Calmès, B., Déglise, F., Fasel, J., Østvær, P., 2020. Milnor-
Witt Motives, arXiv:2004.06634v1.

Bachmann, T., Yakerson, M., 2020. Towards Conservativity of Gm-
Stabilisation, journal of Geometry and Topology 24-4, 1969-2034.

Bass, H., Tate, J., 1973. The Milnor ring of a global field. "Classical” algebraic
K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash.,
Battelle Memorial Inst., 1972), pp. 349–446. Lecture Notes in Math., Vol.
342, Springer, Berlin.

Cisinski, D.-C., Déglise, F., 2019. Triangulated categories of mixed motives,
springer Monographs in Mathematics, Springer.

Dubouloz, A., Fasel, J., 2018. Families of A1-contractible affine threefolds,
algebraic Geometry 5 (1) 1-14.

Déglise, F., 2011. Modules homotopiques. Doc. Math. 16, 411–455.

50



Déglise, F., 2018. Bivariant theories in motivic stable homotopy, documenta
Mathematica, 23: 997-1076 (79 pages).

Déglise, F., Jin, F., Khan, A., 2021. Fundamental classes in motivic homo-
topy theory, journal of the EMS online.

Fasel, J., 2008. Groupes de Chow-Witt. Mém. Soc. Math. Fr., Nouv. Sér.
113, viii+197 pp.

Fasel, J., 2020. Lectures on Chow-Witt groups, "Motivic homotopy theory
and refined enumerative geometry", Contemp. Math. 745.

Fasel, J., Østvær, P., 2017. A cancellation theorem for Milnor-Witt corre-
spondences, arXiv:1708.06098.

Feld, N., 2020a. Milnor-Witt cycle modules, (English) Zbl 07173201 J. Pure
Appl. Algebra 224, No. 7, Article ID 106298, 44 p.

Feld, N., 2020b. Transfers on Milnor-Witt K-theory, arXiv:2011.01311
[math.AG], accepted for publication in Tohoku Mathmatical Journal.

Feld, N., 2021. Morel homotopy modules and Milnor-Witt cycle modules,
doc. Math. 26, 617-659.

Garkusha, G., Panin, I., 2021. Framed motives of algebraic varieties, j. Amer.
Math. Soc. 34, 261-313.

Gille, P., Szamuely, T., 2017. Central simple algebras and Galois cohomol-
ogy. 2nd revised and updated edition., 2nd Edition. Vol. 165. Cambridge:
Cambridge University Press.

Hoyois, M., Krishna, A., Østvær, P. A., 2015. A1-contractibility of Koras-
Russell threefolds, arXiv:1409.1293v2.

Kato, K., 1980. A generalization of local class field theory by using K-groups.
II., . Fac.Sci. Univ. Tokyo Sect. IA Math. 27, no. 3, 603–683.

Morel, F., 2003. An introduction to A1-homotopy theory. In: Contemporary
developments in algebraic K-theory. Proceedings of the school and confer-
ence on algebraic K-theory and its applications, ICTP, Trieste, Italy, July
8–19, 2002. Dedicated to H. Bass on the occasion of his 70th birthday.
Trieste: ICTP - The Abdus Salam International Centre for Theoretical
Physics, pp. 361–441.

51



Morel, F., 2011. On the Friedlander-Milnor conjecture for groups of small
rank. In: Current developments in mathematics, 2010. Somerville, MA:
International Press, pp. 45–93.

Morel, F., 2012. A1-algebraic topology over a field. Vol. 2052. Berlin:
Springer.

Rost, M., 1996. Chow groups with coefficients. Doc. Math. 1, 319–393.

Serre, J.-P., 1965. Algèbre locale. Multiplicités. Cours au Collège de France,
1957-1958, rédigé par Pierre Gabriel. 2e ed. Vol. 11. Springer, Cham.

Stacks Project Authors, T., 2018. Stacks Project. https://stacks.math.
columbia.edu.

52

https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	Introduction
	Current work
	Outline of the paper

	Homotopy sheaves
	Unramified sheaves
	Contracted homotopy sheaves

	Sheaves with generalized transfers
	Morel's axioms
	MW-transfers structure

	Morel's conjecture on Bass-Tate transfers
	Bass-Tate transfers
	Unicity of transfers

	MW-homotopy sheaves
	Sheaves with MW-transfers
	Structure of generalized transfers

	Applications
	Infinite suspensions of homotopy sheaves
	Towards conservativity of Gm-stabilization


