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Abstract

We prove that the Chow-Witt group of zero-cycles is a birational invariant
of smooth proper schemes over a base field.
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Introduction

The notion of Milnor-Witt cycle modules is introduced by the author in [Fel20,
Fel21b] over a perfect field k which, after slight changes, can be generalized to
more general base schemes (see [BHP22] for the case of a regular base scheme,
and [DFJ22] for any base schemes).

The main example of a Milnor-Witt cycle module is given by the Milnor-Witt
K-theory KMW (see [BCD+20, Fel21c, Fel21d, Fel21a].
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To any MW-cycle module M and any k-scheme X equipped with a line bun-
dle lX , one can associated a Rost-Schmid complex C∗(X,M, lX) whose homol-
ogy groups are called the called the Chow-Witt groups with coefficient in M . In
particular, if M = KMW , one recovers the Chow-Witt groups C̃H∗(X, l) (see
[Fas20]) which are, in some sense, a quadratic refinement of the classical Chow
group CH∗(X).

A well-known consequence of intersection theory is that the Chow group CH0(X)
is a birational invariant. Indeed, a partial result was proved in [CC79]. The case of
an algebraically closed base field can be found in [Ful98, Example 16.1.11]. The
general case follows verbatim from the proof of Fulton, according to [vDdB16]. It
is also a consequence of Theorem 2.2.12.

A natural question is wether or not the birational invariance holds true for the
Chow-Witt group and, more generally, of the Chow-Witt groups with coefficients in
a Milnor-Witt cycle module). It is easy to see that the Chow-Witt group in cohomo-
logical degree zero C̃H0 is a birational invariant for smooth proper k-scheme (see
[Fel21b, Theorem 5.6]). In homological degree zero, the question is more complex.

Following ideas of Merkurjev [KM13], we prove that the Chow-Witt group of
zero-cycles is a birational invariant for smooth proper schemes. More generally, we
have:

Theorem 1 (see Theorem 2.2.12). The group A0(X,M) is a birational invariant of
the smooth proper scheme X .

In particular, the Chow-Witt group of zero-cycles C̃H0(X) is a birational invari-
ant of the smooth proper scheme X .

Outline of the paper

In Section 1, we explain how to build a special type of Milnor-Witt cycle module
from a fix MW-module. Moreover, we define a cup product for oriented schemes.

In Section 2, we prove that the two previous constructions are compatible with
each other in some sense. This allows us to define a composition of Milnor-Witt
rational correspondences and construct an associated pushforward map. Finally,
we apply these results to prove that Chow-Witt group of zero-cycles is a birational
invariant for smooth proper schemes.

In Appendix A, we recall the basic definitions of (cohomological) Milnor-Witt
cycle modules along with the basic maps (pushforward, pullback, etc.). We then
define the new class of oriented schemes.
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Notations and conventions
In this paper, schemes are noetherian and finite dimensional. We fix a base field1 k
and put S = Spec k, and we fix a base ring of coefficients R. If not stated otherwise,
all schemes and morphisms of schemes are defined over S. A point (resp. trait,
singular trait) of S will be a morphism of schemes Spec(k) → S essentially of
finite type and such

Conventions: a morphism f : X → S (sometime denoted by X/S) is:

• essentially of finite type if f is the projective limit of a cofiltered system
(fi)i∈I of morphisms of finite type with affine and étale transition maps

• lci if it is smoothable and a local complete intersection (i.e. admits a global
factorization f = p ◦ i, p smooth and i a regular closed immersion);

• essentially lci if it is a limit of lci morphisms with étale transition maps.

Let X/S be a scheme essentially of finite type. We put X(p) the set of p-dimensional
points of X .

A point x of S is a map x : Spec(E) → S essentially of finite type and such E
is a field. We also say that E is a field over S.

Given a morphism of schemes f : Y → X , we let Lf be its cotangent complex,
an object of Db

coh(Y ), and when the latter is perfect (e.g. if f is essentially lci), we
let τf be its associated virtual vector bundle over Y , and by ωf the determinant of
τf .

If not stated otherwise, M is a (cohomological) Milnor-Witt cycle module, X is
an S-scheme, l is a line bundle over X , and p, q are integers.

1 Main constructions

1.1 The relative perverse homology
We follow [Ros96, §7]. In this section, we show that new Milnor-Witt cycle mod-
ules can be obtained from the Chow groups of the fibers of a morphism.

1Many results of the present paper are in fact true over a more general base scheme.
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1.1.1. Let ρ : Q → S be a morphism of finite type and let M be a cohomological
MW-cycle module over Q. Fix l a line bundle over Q. For any field F over S,
denote by QF = Q ×B SpecF . We define an object function Ap[ρ,M, l] on F(S)
by

Ap[ρ,M, l] =
⊕

q∈Z Ap[ρ,Mq, l]

where

Ap[ρ,Mq, l](F ) = Ap(QF ,Mq, ω
∨
QF /Q ⊗ l).

Our aim is to show that Ap[ρ,M, l] is in a natural way a Milnor-Witt cycle module
over S.

1.1.2. All the properties of Milnor-Witt cycle modules except axiom (C) hold al-
ready on complex level, i.e. for the groups Cp(QF ,M). Indeed, we denote by M̂
the object function on F(B) defined by

M̂(F ) = Cp(QF ,M, ω∨
QF /Q ⊗ l) =

⊕
q∈ZCp(QF ,Mq, ω

∨
QF /Q).

We first describe its data as a Milnor-Witt cycle premodule. These will be denoted
by r̂esF/E, ĉoresF/E , etc. in order to distinguish them from the data resF/E, coresF/E ,
etc. of M .

For a morphism of fields ϕ : E → F , let ϕ : QF → QE be the induced map.

1. DATA D1 Define

r̂esF/E := ϕ! : Cp(QE,Mq, ω
∨
QE/Q) → Cp(QF ,Mq, ω

∨
QF /Q).

2. DATA D2 Assume ϕ finite. Define

ĉoresF/E := ϕ∗ : Cp(QF ,Mq,OQF
) → Cp(QE,Mq,OQE

).

3. DATA D3 Simply take the KMW -module structure on Cp(QF ,M) described
in [DFJ22, §1.4 and §5.4].

4. DATA D4 Denote by Q̃v = Q×SSpecOv, the generic fiber QF and the special
fiber Qκ(v). Define

∂̂v : Cp(QF ,Mq) → Cp−1(Qκ(v),Mq)

by (∂̂v)
x
y = ∂x

y with ∂x
y as in [DFJ22, §5.3.13] with respect to the scheme Q̃v.
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Theorem 1.1.3. Keeping the previous notations, the object functor M̂ along with
these data form a Milnor-Witt cycle premodule over S.

Proof. All the required properties follow from the rules and axioms for M and from
the functorial properties studied in [DFJ22, §1.4 and §5.4].

1.1.4. Now, we want to relate the differentials for the MW-cycle premodule M̂ to
the differentials for the MW-cycle module M .

Let X → S be a scheme over S and let X̃ = Q×S X . Then for x, y in X , there
is a map

∂̂x
y : M̂(x) → M̂(y)

as in [DFJ22, §5.3.13]. By definition, this is a map

∂̂x
y : Cp(Qκ(x),M) → Cp(Qκ(y),M)

between cycle groups with coefficients in M .

Proposition 1.1.5. Let x̃, ỹ in X̃ be points lying over x, y ∈ X , respectively, and
assume that x̃ ∈ (Qκ(x))(q) and ỹ ∈ (Qκ(y))(q). Denote by (∂̂x

y )
x̃
ỹ the component of

∂̂x
y with respect to x̃ and ỹ. Then

(∂̂x
y )

x̃
ỹ = ∂x̃

ỹ : Mq(x̃, ωx̃/S) → Mq−1(ỹ, ωỹ/S).

Proof. We may assume ỹ ∈ {x̃}
(1)

, since otherwise both sides are trivial. The

dimension inequality [Mat80, p. 85] shows then y ∈ {x}
(1)

. Let v run through the
valuations of κ(x) with center y in X . Moreover, let w run through the valuations
on κ(x̃) with center ỹ in X̃ . The restriction of any w to κ(x) is one of the valuations
v. Let w̃ ∈ Qκ(v) be the center of w in X̃ ×X SpecOv. Now the claim follows from

(∂̂x
y )

x̃
ỹ = (

∑
v ĉoresκ(v)/κ(y) ◦ ∂̂v)x̃ỹ

=
∑

v

∑
w|v(ĉoresκ(v)/κ(y))

w̃
ỹ ◦ (∂̂v)x̃w̃

=
∑

v

∑
w|v coresκ(w̃/κ(ỹ) ◦ coresκ(w)|κ(w̃) ◦∂w

=
∑

w coresκ(w)/κ(ỹ) ◦∂w
= ∂x̃

ỹ .

It follows from [DFJ22, Proposition 1.4.6] that the data of the MW-cycle pre-
module M̂ commute with the differentials of the complex C∗(QF ,M). Passing to
homology, we obtain data D1-D4 for the object function Aq[ρ,M ].
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Theorem 1.1.6. Keeping the previous notations, the object function Ap[ρ,M ] to-
gether with these data is a Milnor-Witt cycle module over S.

Proof. The rules for the data of the MW-cycle premodule Ap[ρ,M ] are immediate
from the rules for M̂ . Moreover, axiom (FD) for M and Proposition 1.1.5 show that
(FD) holds for M̂ and thus for Ap[ρ,M ]. It remains to verify axiom (C).

Consider the map

Cp(Qκ(ξ))
δ // Cp−1(Qκ(ξ))⊕

⊕
x∈X(1) Cp(Qκ(x))⊕ Cp+1(Qκ(x0))

δ // Cp(Qκ(x0))

defined by δzy = ∂z
y with ∂z

y as in [DFJ22, §5.3.13] with respect to the scheme
Q×B X (we have shortened the notation by omitting M ).

By Proposition 1.1.5, we are reduced to show δ ◦ δ = 0. It suffices to check that
(δ ◦ δ)zy = 0 for z ∈ (Qκ(ξ))(q) and y ∈ (Qκ(x0))(q) with y ∈ {z}

(2)
(here {z} is the

closure of z in X̃). The dimension inequality [Mat80, p. 85] shows

Z(1) ⊂ (Qκ(ξ))(q−1) ∪
⋃

x(Qκ(x))(q) ∪ (Qκ(x0))(q+1)

with Z = {z}(y). We are done by axiom (C) for M .

Definition 1.1.7. Keeping the previous notations, the Milnor-Witt cycle module
Ap[ρ,M ] is called the p-th relative perverse homology of M with respect to ρ.

Remark 1.1.8. One should also obtain the results present in [Ros96, §8]. In par-
ticular, the MW-cycle module Aq[ρ,M ] could be used to give another proof of the
homotopy invariance of the Rost-Schmid complex.

1.2 The cup product
1.2.1. We follow ideas of Merkurjev [Mer03]. We work over a base field k. We fix
M a Milnor-Witt cycle module over k.

1.2.2. Let M×N → P be a bilinear pairing of MW-cycle modules over k. Let X, Y
and Z be smooth schemes over k with Y irreducible smooth and proper. Denote by
∆ : Y → Y × Y the diagonal map. Let q be an integer and lX (resp. lY , l′Y , and l′Z)
a line bundle over X (resp. Y , Y , and Z). Assume that ωY/k ⊗ lY ⊗ l′Y ≃ OY .

We have a ∪-product

∪ : Ar(X × Y,Ms, lX ⊗ lY )⊗ Ap(Y × Z,Nq, l
′
Y ⊗ l′Z) →

Ar+p−dY (X × Z, Ps+q+dY , lX ⊗ lZ)

defined as the composition
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Ar(X × Y,Ms, lX ⊗ lY )⊗ Ap(Y × Z,Nq, l
′
Y ⊗ l′Z)

×
��

Ar+p(X × Y × Y × Z, Pq+s, lX ⊗ lY ⊗ l′Y ⊗ l′Z)

(IdX ⊗∆⊗IdZ)∗

��
Ar+p−dY (X × Y × Z, Ps+q+dY , lX ⊗ ωY/k ⊗ lY ⊗ l′Y ⊗ l′Z)

≃
��

Ar+p−dY (X × Y × Z, Ps+q+dY , lX ⊗ l′Z)

πXZ∗
��

Ar+p−dY (X × Z, Ps+q+dY , lX ⊗ l′Z)

where × is the cross product (see [Fel21b, Section 10]), ∆ : Y → Y × Y is the
diagonal embedding and πXZ : X × Y × Z → X × Z is the projection. The
pushforward pXZ∗ is well-defined because Y is smooth and proper.

1.2.3. In particular, taking N = M = P = KMW , lX = ω∨
X/k, lY = OY , l′Y = ω∨

Y/k,
l′Z = OZ , r = −s and p = −q, we have the product

∪ : C̃Hr(X × Y, ω∨
X/S)⊗ C̃Hp(Y × Z, ω∨

Y/S) → C̃Hr+p−dY (X × Z, ω∨
X/S)

which could be taken as the composition law for the category of Milnor-Witt in-
tegral correspondences C̃or with objects the smooth proper schemes over k and
morphisms

HomC̃or(X, Y ) =
⊕

i C̃Hdi(Xi × Y, ω∨
X/S),

where Xi are irreducible (connected) components of X with di = dimXi.

2 Milnor-Witt rational correspondences
Let X be a smooth and proper k-scheme and lX (resp. lY ) a line bundle over X
(resp. Y ). There is a canonical map of complexes

ΘM : Cp(X × Y,Mq, lX ⊗ lY ) → Cp(X,A0[Y,Mq, lY ], lX),

that takes an elements in M(z, ωz ⊗ lX |z ⊗ lY |z) for z ∈ (X × Y )(p) to zero if
dimension of the projection x of z in X is strictly less than p, and identically to
itself otherwise. In the latter case, we consider z as a point of dimension 0 in
Yx := Yκ(x) under the inclusion Yx ⊂ X × Y . Thus, ΘY,M ”ignores” points in
X × Y that lose dimension being projected to X .

We study various compatibility properties of ΘM .
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2.1 Cross products
Let M ×N → P be a bilinear pairing of MW-cycle modules over k. For a smooth
scheme Y over k and lY a line bundle over Y , we can define a pairing

M × A0[Y,N, lY ] → A0[Y, P, lY ]

in an obvious way.

Lemma 2.1.1. For X, Y, Z smooth k-schemes, and lX (resp. lY , lY ) a line bundle
over X (resp. Y , Z), the following diagram is commutative:

Cp(X,Mq, lX)⊗ Cr(Y × Z,Ns, lY ⊗ lZ)

Id×ΘN

��

× // Cp+r(X × Y × Z, Pq+s, lX ⊗ lY ⊗ lZ)

ΘP

��
Cp(X,Mq, lX ], lY )⊗ Cr(Y A0[Z,Ns, lZ ], lY )

× // Cp+r(X × Y,A0[Z, Pq+s, lZ ], lX ⊗ lY ).

Proof. Let x ∈ X(p) and µ ∈ Cp(X,Ms, lX). Consider the following commutative
diagram

Cr(Y × Z,Ns, lY ⊗ lZ)
ΘN //

π′∗
x

��

Cr(Y,A0[Z,Ns, lZ ], lY )

π∗
x

��
Cr((Y × Z)x, Ns, lY ⊗ lZ)

ΘN //

m′
µ

��

Cp(Yx, A0[Z,Ns, lZ ], lY )

mµ

��
Cp+r((Y × Z)x, Pq+s, lX ⊗ lY ⊗ lZ)

ΘP //

i′x,∗
��

Cp+r(Yx, A0[Z, Pq+s, lZ ], lX ⊗ lY )

ix,∗
��

Cp+r(X × Y × Z, Pq+s, lX ⊗ lY ⊗ lZ)
ΘP // Cp+r(X × Y,A0[Z, Pq+s, lZ ], lX ⊗ lY )

where πx : Yx → Y and π′
x : (X × Y )x → X × Y are the natural projections,

mµ and m′
µ are the multiplications by µ, and ix : Yx → X × Y and i′x : (Y ×

Z)z → X × Y × Z are the inclusions. By the definition of the cross product, the
compositions in the two rows of the diagram are the multiplications by µ.

2.1.2. PULLBACK MAPS Let f : Z → X be a regular closed embedding of smooth
schemes of dimension s and l a line bundle over X . We denote by NX/Z the normal
bundle over Z. For an smooth scheme Y , the closed embedding

f ′ = f × IdY : Z × Y → X × Y

is also regular and the normal bundle NX×Y/Z×Y is isomorphic to NX/Z × Y .
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Lemma 2.1.3. The following diagram is commutative:

Ap(X × Y,Mq, l)
f ′∗

//

ΘM

��

Ap+s(Z × Y,Mq−s, l ⊗ ω∨
f )

ΘM

��
Ap(X,A0[Y,Mq], l)

f∗
// Ap+s(Z,A0[Y,Mq−s], l ⊗ ω∨

f ).

Proof. Let πX : Gm × X → X and π′
X : Gm × X × Y → X × Y be the natural

projections. The following diagram

Cp(X × Y,Mq, l)
(π′

X)∗
//

ΘM

��

Cp+1(Gm ×X × Y,Mq−1, l)

ΘM

��
Cp(X,A0[Y,Mq], l)

π∗
X // Cq+1(Gm ×X,A0[Y,Mq−1], l)

is commutative.
Let t be the coordinate function on Gm. The map ΘM commutes with the mul-

tiplication by t, i.e. the following diagram

Cp(Gm ×X × Y,Mq, l)
[t] //

ΘM

��

Cp(Gm ×X × Y,Mq+1, l)

ΘM

��
Cp(Gm ×X,A0[Y,Mq], l)

[t] // Cp(Gm ×X,A0[Y,Mq+1], l)

is commutative.
Let D = D(X,Z) be the deformation space of the embedding f (see e.g.

[Ros96, §10]). There is a closed embedding i : NX/Z → D with the open com-
plement j : Gm × X → D. Then D′ = D × Y is the deformation space
D(X × Y, Z × Y ) with the closed embedding

i′ = i× IdY : NX×Y/Z×Y → D′

and the open complement j′ = j × IdY : Gm ×X × Y → D′.
The commutative diagram with exact rows
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...

��

...

��
Cp(NX/Z × Y,Mq, l)

ΘM //

i′∗
��

Cp(NX/Z , A0[Y,Mq], l)

i∗
��

Cp(D
′,Mq, l)

ΘM //

j′∗

��

Cp(D,A0[Y,Mq], l)

j∗

��
Cp(Gm ×X × Y,Mq, l)

ΘM //

��

Cp(Gm ×X,A0[Y,Mq], l)

��
...

...

induces the commutative diagram

Cp(Gm ×X × Y,Mq, l)
∂ //

ΘM

��

Cp−1(NX/Z × Y,Mq, l)

ΘM

��
Cp(Gm ×X,A0[Y,Mq], l)

∂ // Cp(NX/Z , A0[Y,Mq], l).

Finally, we also have the commutative diagram

Cp(Z × Y,Mq, l ⊗ ω∨
f )

π∗
//

ΘM

��

Cp+s(NX/Z × Y,Mq−s, l)

ΘM

��
Cp(Z,A0[Y,Mq], l ⊗ ω∨

f )
π′∗
// Cp+s(NX/Z , A0[Y,Mq−s], l)

where π : NX/Z → Z is the canonical projection and s its relative dimension (π is a
quasi-isomorphism by homotopy invariance). By the definition of the pullback map
(see [Fel20, Section 7]), the result follows from the composition of the previous
commutative square.

Remark 2.1.4. The previous lemma could be stated at the level of complexes with
the use of Rost’s coordinations or by using the homotopy complex defined in [DFJ22,
§2.2], but we do not need this generality.

2.1.5. PUSHFORWARD MAPS Let f : X → Z be a map of oriented smooth schemes
(over k). and l a line bundle over Z. For an oriented smooth scheme Y , set

f ′ = f × IdY : X × Y → Z × Y .

Lemma 2.1.6. The following diagram
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Cp(X × Y,Mq, l)
f ′
∗ //

ΘM

��

Cp(Z × Y,Mq, l)

ΘM

��
Cp(X,A0[Y,Mq], l)

f∗ // Cp(Z,A0[Y,Mq], l).

is commutative.

Proof. Let u ∈ (X × Y )(p), a ∈ M(κ(u), ωu ⊗ l). Set v = f ′(u) ∈ Z × Y . If
dim(v) < p then (f ′

∗)u(a) = 0. In this case, the dimension of the projection y of u
in Y is less than p and hence (ΘM)u(a) = 0.

Assume that dim(v) = p. Then κ(u)/κ(v) is a finite field extension and

b = (f ′
∗)u(a) = coresκ(u)/κ(v)(a) ∈ M(κ(v), ωv ⊗ l).

If dim(y) < p, then (ΘM)u(a) = 0, and Θv(b) = 0.
Assume that dim(y) = p, then

(ΘM ◦ f ′
∗)u(a) = coresκ(u)/κ(v)(a) = b

considered as an element of A0[Y,Mq](κ(z), ωz ⊗ l) = A0(Yz,Mq, l), where z is
the image of v in Z. On the other hand,

(f∗ ◦ΘM)u(a) = ϕ∗(a),

where ϕ : Yx → Yz is the natural map (where x is the image of u in X) and is
considered as an element of A0[Y,Mq](κ(z), ωz ⊗ l). It remains to notice that

ϕ∗(a) = coresκ(u)/κ(v)(a) = b.

2.2 Rational correspondences
Let Y and Z be smooth schemes over k. Assume Y irreducible and denote by
dY the dimension of Y .By Lemma 2.1.1, for the pairing M × KMW → M and
”X = Y ” we have the commutative diagram

A0(Y,Mq)⊗ C̃HdY (Y × Z, ω∨
Y/k)

Id⊗Θ
KMW

��

× // AdY (Y × Y × Z,M−dY +q, ω
∨
Y/k)

ΘM

��
A0(Y,Mq)⊗ AdY (Y,A0[Z,K

MW
−dY

], ω∨
Y/k)

× // AdY (Y × Y,A0[Z,M−dY +q], ω
∨
Y/k).

Let ∆ : Y → Y × Y be the diagonal embedding and ∆′ = ∆ ⊗ IdZ . By Lemma
2.1.3, the following diagram
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AdY (Y × Y × Z,M−dY +q, ω
∨
Y/k)

∆′∗
//

ΘM

��

A0(Y × Z,Mq)

ΘM

��
AdY (Y × Y,A0[X,M−dY +q], ω

∨
Y/k)

∆∗
// A0(Y,A0[Z,Mq])

.

is commutative.
Finally, assume that the structure map f : Y → Spec k is proper and denote by

f ′ = IdX ×f . Lemma 2.1.6 implies that the following diagram

A0(Y × Z,Mq)
f ′
∗ //

ΘM

��

A0(Z,Mq)

A0(Y,A0[Z,Mq])
f∗ // A0(Spec k,A0[Z,Mq]).

is commutative.

Proposition 2.2.1. Let Y and Z be smooth schemes over k, Y an irreducible smooth
and proper, and M an MW-cycle module over k. Then the pairing

∪ : A0(Y,Mq)⊗ C̃HdY (Y × Z, ω∨
Y/k) → A0(Z,Mq)

is trivial on all cycles in C̃HdY (Y ×Z, ω∨
Y/k) that are not dominant over Y . In other

words, the ∪-product factors through a natural pairing

∪ : A0(Y,Mq)⊗ C̃H0(Zκ(Y ), ω
∨
Y/k) → A0(Y,Mq)

Proof. This follows from composing all three diagrams and taking into account that

AdY (Y,A0[Z,K
MW
−dY

], ω∨
Y/k) = C̃H0(Zκ(Y ), ω

∨
Y/k).

2.2.2. Keeping the previous notations, for Z irreducible smooth scheme over k, the
diagram

AdX (X × Y,Mqω
∨
X/k)⊗ C̃HdY (Y × Z, ω∨

Y/k)
∪ //

��

AdX (X × Z,Mq, ω
∨
X/k)

��
A0(Yκ(X),Mq, ω

∨
X/k)⊗ C̃HdY (Y × Z, ω∨

Y/k)
∪ //

��

A0(Zκ(X),Mq, ω
∨
X/k)

��
A0(Yκ(X),Mq, ω

∨
X/k)⊗ C̃H0(Zκ(Y ), ω

∨
Y/k)

∪ // A0(Zκ(X),Mq, ω
∨
X/k)
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is commutative.

2.2.3. In particular, we have a well defined pairing

∪ : C̃H0(Yκ(X), ω
∨
X/k)⊗ C̃H0(Zκ(Y ), ω

∨
Y/k) → C̃H0(Zκ(X), ω

∨
X/k)

that can be taken for the composition law in the category of Milnor-Witt rational
correspondences R̃atCor(k) whose objects are the smooth proper schemes over k
and morphisms are given by

Hom ˜RatCor(k)
(X, Y ) =

⊕
i C̃H0(Yκ(Xi), ω

∨
X/k),

where Xi are all irreducible (connected) components of X .
There is an obvious functor

Ξ : C̃or(k) → R̃atCor(k).

Theorem 2.2.4. For an MW-cycle module M , there exists a well-defined con-
travariant functor

R̃atCor(k) → A b,X 7→ A0(X,M), a 7→ − ∪ a.

More precisely, the functor C̃or(k) → R̃atCor(k) factors through Ξ.

Proof. This follows from Proposition 2.2.1.

Remark 2.2.5. Assuming one works with oriented (see A.2.2) smooth proper k-
schemes, then there is also a contravariant functor given by a 7→ a ∪ −. We won’t
need this result.

2.2.6. If α : X ⇝ Y is a MW-rational correspondence between two smooth proper
k-schemes, we have a natural pushforward morphism

α∗ : A0(Y,M) → A0(X,M).

Remark 2.2.7. If α et β are two composable Milnor-Witt rational correspondences,
then

(α ◦ β)∗ = α∗ ◦ β∗.

2.2.8. Let f : Y 99K X be a rational morphism of irreducible smooth k-schemes. It
defines a rational point of Yκ(X) over κ(X) and hence a morphism in Hom ˜RatCor(k)

(X, Y )

that we denote by [f ] : X ⇝ Y . In fact, the rational correspondence [f ] is the im-
age of the class of the (transposed of the) graph of f (as in [BCD+20, Chapter 2,
§4.3]) under the natural map

13



C̃HdX (X × Y, ωX/k) → C̃H0(Yκ(X), ωX/k).

Lemma 2.2.9. Let κ/k be a finite type extension of fields. Let f : X 99K Y be a
rational morphism of smooth proper κ-schemes and let x ∈ X be a rational point
such that f(x) is defined. Denote by [x] ∈ C̃H0(X,ωκ/k) the 0-cycle associated to
x. Then

[f ]∗([x]) = [f(x)]

in C̃H0(Y, ωκ/k).

Proof. Let Γ ⊂ X × Y be the graph of f . The preimage of {x} × Γ under the
morphism ∆X ⊗ IdY : X×Y → X×X×Y is the reduced scheme {x}×{f(x)}.
Hence

[f ]∗([x]) = [x] ∪ [f ] = π∗(∆X ⊗ IdY )
∗([x]× [Γ]) = π∗([x]× [f(x)]) = [f(x)]

where π : X × Y → Y is the projection.

Corollary 2.2.10. Let f : X 99K Y and g : Y 99K Z be composable rational
morphisms of smooth proper schemes and let h : X 99K Z be the composition of f
and g. Then [g] ◦ [f ] = [h] in Hom ˜RatCor(k)

(X,Z).

Proof. Let y be the rational point of Yκ(X) corresponding to f . By assumption, the
rational morphism gκ(X) : Yκ(X) 99K Zκ(X) is defined at y. By Lemma 2.2.9 (with
”κ = κ(X)”,”X = Yκ(X)”, ”Y = Zκ(X) and ”f = gκ(X)”) we see that the compo-
sition of correspondences f and g takes [y] to [gκ(X)(y)] ∈ C̃H0(Zκ(X), ω

∨
X/k). Note

that the latter class corresponds to h.

Corollary 2.2.11. For any two composable rational morphisms f : X 99K Y and
g : Y 99K Z of smooth proper schemes, we have

[g ◦ f ]∗ = [g]∗ ◦ [f ]∗.

Proof. This is a consequence of Corollary 2.2.10.

Theorem 2.2.12. The group A0(X,M) is a birational invariant of the smooth
proper scheme X .

In particular, the Chow-Witt group of zero-cycles C̃H0(X) is a birational in-
variant of the smooth proper scheme X .

Proof. This is an immediate consequence of Corollary 2.2.11.

Example 2.2.13. According to [Fas20, §5], we know that C̃H0(P
n
k) = GW(k) if n

is even, and C̃H0(P
n
k) = Z if n is odd.

In particular, we recover the computations of C̃H0(Qn) where Qn is an n-
dimensional split quadric (see [HXZ20, Corollary 9.5]).
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A Appendix

A.1 Cohomological Milnor-Witt cycle modules

Definition A.1.1. 1. If S is a scheme, call an S-field the spectrum of a field
essentially of finite type over S, and a morphism of S-fields an S-morphism
between the underlying schemes. The collection of S-fields together with
morphisms of S-fields defines a category which we denote by FS . We say
that a morphism of S-fields is finite (resp. separable) if the underlying field
extension is finite (resp. separable).

In what follows, we will denote for example f : SpecF → SpecE a mor-
phism of S-fields, and ϕ : E → F the underlying field extension.

An S-valuation on an S-field SpecF is a discrete valuation v on F such that
Im(O(S) → F ) ⊂ Ov. We denote by κ(v) the residue field, mv the valuation
ideal and Nv = m/m2.

2. Let S be a scheme and let R be a commutative ring with unit. An R-linear
cohomological Milnor-Witt cycle premodule over S is a functor from FS

to the category of Z-graded R-modules

M : (FS)
op → ModZ

R

SpecE 7→ M(E)
(A.1.1.a)

for which we denote by Mn(E) the n-the graded piece, together with the
following functorialities and relations:

Functorialities:

(D1) For a morphism of S-fields f : SpecF → SpecE or (equivalently)
ϕ : E → F , a map of degree 0

f ∗ = ϕ∗ = resF/E : M(E) → M(F ); (A.1.1.b)

(D3) For an S-field SpecE and an element x ∈ KMW
m (E), a map of degree

m

γx : M(E) → M(E) (A.1.1.c)

making M(E) a left module over the lax monoidal functor KMW
? (E)

(i.e. we have γx ◦ γy = γx·y and γ1 = Id).
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The axiom (D3) allows us to define, for every S-field SpecE and every 1-
dimensional E-vector space L, a graded R-module

M(E,L) := M(E)⊗R[E×] R[L×] (A.1.1.d)

where R[L×] is the free R-module generated by the nonzero elements of L,
and the group algebra R[E×] acts on M(E) via u 7→ ⟨u⟩ thanks to (D3).

(D2) For a finite morphism of S-fields f : SpecF → SpecE or ϕ : E → F ,
a map of degree 0

f! = ϕ! = coresF/E : M(F, ωF/E) → M(E); (A.1.1.e)

(D4) For an S-field SpecE and an S-valuation v on E, a map of degree −1

∂v : M(E) → M(κ(v), N∨
v ). (A.1.1.f)

Relations: We refer to [Fel20, Definition 3.1] for the list of relations.

A.1.2. Fix M a Milnor-Witt cycle premodule. If X is any scheme, let x, y be any
points in X . We can define a map

∂x
y : Mq(κ(x), ωκ(x)/k) → Mq−1(κ(y), ωκ(y)/k)

thanks to (D2) and (D4).

Definition A.1.3. (see [Fel20, Definition 4.2])
A Milnor-Witt cycle module M over k is a Milnor-Witt cycle premodule M

which satisfies the following conditions (FD) and (C).

(FD) FINITE SUPPORT OF DIVISORS. Let X be a normal scheme and ρ be an
element of M(ξX ,X). Then ∂x(ρ) = 0 for all but finitely many x ∈ X(1).

(C) CLOSEDNESS. Let X be integral and local of dimension 2. Then

0 =
∑

x∈X(1)

∂x
x0

◦ ∂ξ
x : M(κ(ξX), ωκ(ξX)/k) → M(κ(x0), ωκ(x0)/k)

where ξ is the generic point and x0 the closed point of X .

A.1.4. Let M be a Milnor-Witt cycle module over k. We can form a (cohomolog-
ical) Rost-Schmid cycle complex C∗(X,M, l) such that for any integer p, q ∈ Z,
and any line bundle l over X:

Cp(X,Mq, l) := ⊕X(p)
Mp+q(κ(x), ωκ(x)/k ⊗ l|x). (A.1.4.a)

We denote by Ai(X,Mq, l) is the homology of C∗(X,Mq, l) in degree i.
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Remark A.1.5. Taking M = KMW , we obtain

Ai(X,M−i, l) = C̃Hi(X, l)

where the right-hand-side is known as the Chow-Witt group of X .

A.1.6. Fix M a Milnor-Witt cycle module and fix X a k-scheme with a dimensional
pinning. We recall the basic maps that one can define on the cohomological Rost-
Schmid complex.

A.1.7. PUSHFORWARD Let f : Y → X be a k-morphism of schemes. We have

f∗ : Cp(Y,Mq, l) → Cp(X,Mq, l)

as follows. If x = f(y) and if κ(y) is finite over κ(x), then (f∗)
y
x = coresκ(y)/κ(x).

Otherwise, (f∗)yx = 0.

A.1.8. PULLBACK Let f : Y → X be an essentially smooth morphism of schemes
of relative dimension s. Suppose Y connected. Define

f ! : Cp(X,Mq, l) → Cp+s(Y,Mq−s, l ⊗ ω∨
f )

as follows. If f(y) = x, then (f !)xy = resκ(y)/κ(x). Otherwise, (f !)xy = 0. If Y is not
connected, take the sum over each connected component.

A.1.9. MULTIPLICATION WITH UNITS Let a1, . . . , an be global units in O∗
X . De-

fine

[a1, . . . , an] : Cp(X,Mq, l) → Cp(X,Mq+n, l)

as follows. Let x be in X(p) and ρ ∈ M(κ(x), ∗). We consider [a1(x), . . . , an(x)] as
an element of KMW (κ(x)). If x = y, then put [a1, . . . , an]xy(ρ) = [a1(x), . . . , an(x)]·
ρ). Otherwise, put [a1, . . . , an]xy(ρ) = 0.

A.1.10. MULTIPLICATION WITH η Define

η : Cp(X,Mq, l) → Cp(X,Mq−1, l)

as follows. If x = y, then ηxy (ρ) = γη(ρ). Otherwise, ηxy (ρ) = 0.

A.1.11. BOUNDARY MAPS Let X be a scheme of finite type over k, let i : Z → X
be a closed immersion and let j : U = X \ Z → X be the inclusion of the open
complement. We have a map

∂ = ∂U
Z : Cp(U,Mq, ∗) → Cp−1(Z,Mq, ∗).
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which is called the boundary map for the closed immersion i : Z → X .

A.1.12. A pairing N ×M → P between MW-cycle modules is given by maps

Mp(E, l)⊗Nq(E, l′) → Pp+q(E, l ⊗ l′)

which are compatible with the data (D1),..., (D4) (see [Fel20, Definition 3.21] for
more details).

A.1.13. PRODUCT If M ×N → P is a pairing of Milnor-Witt cycle modules, then
there is a product map

Cp(X,Mq, l)× Cr(Y,Ns, l
′) → Cp+r(X × Y, Pq+s, l ⊗ l′)

where X, Y are smooth schemes over k (see also [Fel20, §11]).

Remark A.1.14. The previous basic maps commute with the differentials of the
Rost-Schmid complex and thus induce morphisms on the homology.

A.2 Oriented schemes
A.2.1. The notion of oriented real vector bundles was extended to the algebraic set-
ting by Barges-Morel in [BM00]. We introduce a new category of oriented schemes.
We refer to [DDØ22, Appendix §6.1] for similar results.

Definition A.2.2. Let X/S be a scheme. An orientation of X is an isomorphism
σ : ωX/S → l⊗2

X , where lX is an invertible sheaf over X .
An oriented S-scheme (X, σX : ωX/S → l⊗2

X ) is the data of a scheme X/S and
an orientation σX : ωX/S → l⊗2

X .
A morphism of oriented schemes (Y, σY : ωY/S → l⊗2

Y ) → (X, σX : ωX/S →
l⊗2
X ) is the data of an S-morphism f : Y → X along with an isomorphism of

invertible sheaves l⊗2
Y ≃ f−1l⊗2

X ⊗ ωf which makes the following diagram

ωY/S
≃ //

σY

��

f−1ωX/S ⊗ ωf

σX⊗Idωf

��
l⊗2
Y

≃ // f−1l⊗2
X ⊗ ωf

commutative.
Denote by orSchm the category of oriented schemes (along with morphisms of

oriented schemes).

Remark A.2.3. Let (X, σX : ωX/S → l⊗2
X ) be an oriented scheme. By abuse of

notation, we omit the orientation and simply write X .
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